Step |
Hyp |
Ref |
Expression |
1 |
|
cncfmptss.1 |
⊢ Ⅎ 𝑥 𝐹 |
2 |
|
cncfmptss.2 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) |
3 |
|
cncfmptss.3 |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) |
4 |
3
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑦 ) ) ↾ 𝐶 ) = ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
5 |
|
cncff |
⊢ ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
6 |
2 5
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
7 |
6
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
8 |
7
|
reseq1d |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) = ( ( 𝑦 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑦 ) ) ↾ 𝐶 ) ) |
9 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐹 |
10 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑥 |
11 |
9 10
|
nffv |
⊢ Ⅎ 𝑦 ( 𝐹 ‘ 𝑥 ) |
12 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
13 |
1 12
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) |
14 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
15 |
11 13 14
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑦 ) ) |
16 |
15
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
17 |
4 8 16
|
3eqtr4rd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ↾ 𝐶 ) ) |
18 |
|
rescncf |
⊢ ( 𝐶 ⊆ 𝐴 → ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) → ( 𝐹 ↾ 𝐶 ) ∈ ( 𝐶 –cn→ 𝐵 ) ) ) |
19 |
3 2 18
|
sylc |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) ∈ ( 𝐶 –cn→ 𝐵 ) ) |
20 |
17 19
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐶 –cn→ 𝐵 ) ) |