Metamath Proof Explorer


Theorem cncfmptssg

Description: A continuous complex function restricted to a subset is continuous, using maps-to notation. This theorem generalizes cncfmptss because it allows to establish a subset for the codomain also. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses cncfmptssg.2 𝐹 = ( 𝑥𝐴𝐸 )
cncfmptssg.3 ( 𝜑𝐹 ∈ ( 𝐴cn𝐵 ) )
cncfmptssg.4 ( 𝜑𝐶𝐴 )
cncfmptssg.5 ( 𝜑𝐷𝐵 )
cncfmptssg.6 ( ( 𝜑𝑥𝐶 ) → 𝐸𝐷 )
Assertion cncfmptssg ( 𝜑 → ( 𝑥𝐶𝐸 ) ∈ ( 𝐶cn𝐷 ) )

Proof

Step Hyp Ref Expression
1 cncfmptssg.2 𝐹 = ( 𝑥𝐴𝐸 )
2 cncfmptssg.3 ( 𝜑𝐹 ∈ ( 𝐴cn𝐵 ) )
3 cncfmptssg.4 ( 𝜑𝐶𝐴 )
4 cncfmptssg.5 ( 𝜑𝐷𝐵 )
5 cncfmptssg.6 ( ( 𝜑𝑥𝐶 ) → 𝐸𝐷 )
6 5 fmpttd ( 𝜑 → ( 𝑥𝐶𝐸 ) : 𝐶𝐷 )
7 cncfrss2 ( 𝐹 ∈ ( 𝐴cn𝐵 ) → 𝐵 ⊆ ℂ )
8 2 7 syl ( 𝜑𝐵 ⊆ ℂ )
9 4 8 sstrd ( 𝜑𝐷 ⊆ ℂ )
10 3 sselda ( ( 𝜑𝑥𝐶 ) → 𝑥𝐴 )
11 1 fvmpt2 ( ( 𝑥𝐴𝐸𝐷 ) → ( 𝐹𝑥 ) = 𝐸 )
12 10 5 11 syl2anc ( ( 𝜑𝑥𝐶 ) → ( 𝐹𝑥 ) = 𝐸 )
13 12 mpteq2dva ( 𝜑 → ( 𝑥𝐶 ↦ ( 𝐹𝑥 ) ) = ( 𝑥𝐶𝐸 ) )
14 nfmpt1 𝑥 ( 𝑥𝐴𝐸 )
15 1 14 nfcxfr 𝑥 𝐹
16 15 2 3 cncfmptss ( 𝜑 → ( 𝑥𝐶 ↦ ( 𝐹𝑥 ) ) ∈ ( 𝐶cn𝐵 ) )
17 13 16 eqeltrrd ( 𝜑 → ( 𝑥𝐶𝐸 ) ∈ ( 𝐶cn𝐵 ) )
18 cncffvrn ( ( 𝐷 ⊆ ℂ ∧ ( 𝑥𝐶𝐸 ) ∈ ( 𝐶cn𝐵 ) ) → ( ( 𝑥𝐶𝐸 ) ∈ ( 𝐶cn𝐷 ) ↔ ( 𝑥𝐶𝐸 ) : 𝐶𝐷 ) )
19 9 17 18 syl2anc ( 𝜑 → ( ( 𝑥𝐶𝐸 ) ∈ ( 𝐶cn𝐷 ) ↔ ( 𝑥𝐶𝐸 ) : 𝐶𝐷 ) )
20 6 19 mpbird ( 𝜑 → ( 𝑥𝐶𝐸 ) ∈ ( 𝐶cn𝐷 ) )