Step |
Hyp |
Ref |
Expression |
1 |
|
cncfmptssg.2 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐸 ) |
2 |
|
cncfmptssg.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) |
3 |
|
cncfmptssg.4 |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) |
4 |
|
cncfmptssg.5 |
⊢ ( 𝜑 → 𝐷 ⊆ 𝐵 ) |
5 |
|
cncfmptssg.6 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐸 ∈ 𝐷 ) |
6 |
5
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ 𝐸 ) : 𝐶 ⟶ 𝐷 ) |
7 |
|
cncfrss2 |
⊢ ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) → 𝐵 ⊆ ℂ ) |
8 |
2 7
|
syl |
⊢ ( 𝜑 → 𝐵 ⊆ ℂ ) |
9 |
4 8
|
sstrd |
⊢ ( 𝜑 → 𝐷 ⊆ ℂ ) |
10 |
3
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ 𝐴 ) |
11 |
1
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐸 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑥 ) = 𝐸 ) |
12 |
10 5 11
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑥 ) = 𝐸 ) |
13 |
12
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐶 ↦ 𝐸 ) ) |
14 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐸 ) |
15 |
1 14
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐹 |
16 |
15 2 3
|
cncfmptss |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐶 –cn→ 𝐵 ) ) |
17 |
13 16
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ 𝐸 ) ∈ ( 𝐶 –cn→ 𝐵 ) ) |
18 |
|
cncffvrn |
⊢ ( ( 𝐷 ⊆ ℂ ∧ ( 𝑥 ∈ 𝐶 ↦ 𝐸 ) ∈ ( 𝐶 –cn→ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐶 ↦ 𝐸 ) ∈ ( 𝐶 –cn→ 𝐷 ) ↔ ( 𝑥 ∈ 𝐶 ↦ 𝐸 ) : 𝐶 ⟶ 𝐷 ) ) |
19 |
9 17 18
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐶 ↦ 𝐸 ) ∈ ( 𝐶 –cn→ 𝐷 ) ↔ ( 𝑥 ∈ 𝐶 ↦ 𝐸 ) : 𝐶 ⟶ 𝐷 ) ) |
20 |
6 19
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ 𝐸 ) ∈ ( 𝐶 –cn→ 𝐷 ) ) |