Metamath Proof Explorer


Theorem cncfval

Description: The value of the continuous complex function operation is the set of continuous functions from A to B . (Contributed by Paul Chapman, 11-Oct-2007) (Revised by Mario Carneiro, 9-Nov-2013)

Ref Expression
Assertion cncfval ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐴cn𝐵 ) = { 𝑓 ∈ ( 𝐵m 𝐴 ) ∣ ∀ 𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑤 ) ) ) < 𝑦 ) } )

Proof

Step Hyp Ref Expression
1 cnex ℂ ∈ V
2 1 elpw2 ( 𝐴 ∈ 𝒫 ℂ ↔ 𝐴 ⊆ ℂ )
3 1 elpw2 ( 𝐵 ∈ 𝒫 ℂ ↔ 𝐵 ⊆ ℂ )
4 oveq2 ( 𝑎 = 𝐴 → ( 𝑏m 𝑎 ) = ( 𝑏m 𝐴 ) )
5 raleq ( 𝑎 = 𝐴 → ( ∀ 𝑤𝑎 ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑤 ) ) ) < 𝑦 ) ↔ ∀ 𝑤𝐴 ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑤 ) ) ) < 𝑦 ) ) )
6 5 rexbidv ( 𝑎 = 𝐴 → ( ∃ 𝑧 ∈ ℝ+𝑤𝑎 ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑤 ) ) ) < 𝑦 ) ↔ ∃ 𝑧 ∈ ℝ+𝑤𝐴 ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑤 ) ) ) < 𝑦 ) ) )
7 6 ralbidv ( 𝑎 = 𝐴 → ( ∀ 𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑎 ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑤 ) ) ) < 𝑦 ) ↔ ∀ 𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑤 ) ) ) < 𝑦 ) ) )
8 7 raleqbi1dv ( 𝑎 = 𝐴 → ( ∀ 𝑥𝑎𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑎 ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑤 ) ) ) < 𝑦 ) ↔ ∀ 𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑤 ) ) ) < 𝑦 ) ) )
9 4 8 rabeqbidv ( 𝑎 = 𝐴 → { 𝑓 ∈ ( 𝑏m 𝑎 ) ∣ ∀ 𝑥𝑎𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑎 ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑤 ) ) ) < 𝑦 ) } = { 𝑓 ∈ ( 𝑏m 𝐴 ) ∣ ∀ 𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑤 ) ) ) < 𝑦 ) } )
10 oveq1 ( 𝑏 = 𝐵 → ( 𝑏m 𝐴 ) = ( 𝐵m 𝐴 ) )
11 10 rabeqdv ( 𝑏 = 𝐵 → { 𝑓 ∈ ( 𝑏m 𝐴 ) ∣ ∀ 𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑤 ) ) ) < 𝑦 ) } = { 𝑓 ∈ ( 𝐵m 𝐴 ) ∣ ∀ 𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑤 ) ) ) < 𝑦 ) } )
12 df-cncf cn→ = ( 𝑎 ∈ 𝒫 ℂ , 𝑏 ∈ 𝒫 ℂ ↦ { 𝑓 ∈ ( 𝑏m 𝑎 ) ∣ ∀ 𝑥𝑎𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑎 ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑤 ) ) ) < 𝑦 ) } )
13 ovex ( 𝐵m 𝐴 ) ∈ V
14 13 rabex { 𝑓 ∈ ( 𝐵m 𝐴 ) ∣ ∀ 𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑤 ) ) ) < 𝑦 ) } ∈ V
15 9 11 12 14 ovmpo ( ( 𝐴 ∈ 𝒫 ℂ ∧ 𝐵 ∈ 𝒫 ℂ ) → ( 𝐴cn𝐵 ) = { 𝑓 ∈ ( 𝐵m 𝐴 ) ∣ ∀ 𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑤 ) ) ) < 𝑦 ) } )
16 2 3 15 syl2anbr ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐴cn𝐵 ) = { 𝑓 ∈ ( 𝐵m 𝐴 ) ∣ ∀ 𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ( ( abs ‘ ( 𝑥𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑤 ) ) ) < 𝑦 ) } )