Metamath Proof Explorer


Theorem cnchl

Description: The set of complex numbers is a complex Hilbert space. (Contributed by Steve Rodriguez, 28-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypothesis cnhl.6 𝑈 = ⟨ ⟨ + , · ⟩ , abs ⟩
Assertion cnchl 𝑈 ∈ CHilOLD

Proof

Step Hyp Ref Expression
1 cnhl.6 𝑈 = ⟨ ⟨ + , · ⟩ , abs ⟩
2 1 cnbn 𝑈 ∈ CBan
3 1 cncph 𝑈 ∈ CPreHilOLD
4 ishlo ( 𝑈 ∈ CHilOLD ↔ ( 𝑈 ∈ CBan ∧ 𝑈 ∈ CPreHilOLD ) )
5 2 3 4 mpbir2an 𝑈 ∈ CHilOLD