Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
2 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
3 |
1 2
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
4 |
3
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐾 ) ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
5 |
|
ffun |
⊢ ( 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 → Fun 𝐹 ) |
6 |
|
funcnvcnv |
⊢ ( Fun 𝐹 → Fun ◡ ◡ 𝐹 ) |
7 |
|
imadif |
⊢ ( Fun ◡ ◡ 𝐹 → ( ◡ 𝐹 “ ( ∪ 𝐾 ∖ 𝐴 ) ) = ( ( ◡ 𝐹 “ ∪ 𝐾 ) ∖ ( ◡ 𝐹 “ 𝐴 ) ) ) |
8 |
5 6 7
|
3syl |
⊢ ( 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 → ( ◡ 𝐹 “ ( ∪ 𝐾 ∖ 𝐴 ) ) = ( ( ◡ 𝐹 “ ∪ 𝐾 ) ∖ ( ◡ 𝐹 “ 𝐴 ) ) ) |
9 |
|
fimacnv |
⊢ ( 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 → ( ◡ 𝐹 “ ∪ 𝐾 ) = ∪ 𝐽 ) |
10 |
9
|
difeq1d |
⊢ ( 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 → ( ( ◡ 𝐹 “ ∪ 𝐾 ) ∖ ( ◡ 𝐹 “ 𝐴 ) ) = ( ∪ 𝐽 ∖ ( ◡ 𝐹 “ 𝐴 ) ) ) |
11 |
8 10
|
eqtr2d |
⊢ ( 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 → ( ∪ 𝐽 ∖ ( ◡ 𝐹 “ 𝐴 ) ) = ( ◡ 𝐹 “ ( ∪ 𝐾 ∖ 𝐴 ) ) ) |
12 |
4 11
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐾 ) ) → ( ∪ 𝐽 ∖ ( ◡ 𝐹 “ 𝐴 ) ) = ( ◡ 𝐹 “ ( ∪ 𝐾 ∖ 𝐴 ) ) ) |
13 |
2
|
cldopn |
⊢ ( 𝐴 ∈ ( Clsd ‘ 𝐾 ) → ( ∪ 𝐾 ∖ 𝐴 ) ∈ 𝐾 ) |
14 |
|
cnima |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( ∪ 𝐾 ∖ 𝐴 ) ∈ 𝐾 ) → ( ◡ 𝐹 “ ( ∪ 𝐾 ∖ 𝐴 ) ) ∈ 𝐽 ) |
15 |
13 14
|
sylan2 |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐾 ) ) → ( ◡ 𝐹 “ ( ∪ 𝐾 ∖ 𝐴 ) ) ∈ 𝐽 ) |
16 |
12 15
|
eqeltrd |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐾 ) ) → ( ∪ 𝐽 ∖ ( ◡ 𝐹 “ 𝐴 ) ) ∈ 𝐽 ) |
17 |
|
cntop1 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) |
18 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ 𝐴 ) ⊆ dom 𝐹 |
19 |
18 4
|
fssdm |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐾 ) ) → ( ◡ 𝐹 “ 𝐴 ) ⊆ ∪ 𝐽 ) |
20 |
1
|
iscld2 |
⊢ ( ( 𝐽 ∈ Top ∧ ( ◡ 𝐹 “ 𝐴 ) ⊆ ∪ 𝐽 ) → ( ( ◡ 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ↔ ( ∪ 𝐽 ∖ ( ◡ 𝐹 “ 𝐴 ) ) ∈ 𝐽 ) ) |
21 |
17 19 20
|
syl2an2r |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐾 ) ) → ( ( ◡ 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ↔ ( ∪ 𝐽 ∖ ( ◡ 𝐹 “ 𝐴 ) ) ∈ 𝐽 ) ) |
22 |
16 21
|
mpbird |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐾 ) ) → ( ◡ 𝐹 “ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ) |