Metamath Proof Explorer


Theorem cnclima

Description: A closed subset of the codomain of a continuous function has a closed preimage. (Contributed by NM, 15-Mar-2007) (Revised by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion cnclima ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐾 ) ) → ( 𝐹𝐴 ) ∈ ( Clsd ‘ 𝐽 ) )

Proof

Step Hyp Ref Expression
1 eqid 𝐽 = 𝐽
2 eqid 𝐾 = 𝐾
3 1 2 cnf ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝐽 𝐾 )
4 3 adantr ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐾 ) ) → 𝐹 : 𝐽 𝐾 )
5 ffun ( 𝐹 : 𝐽 𝐾 → Fun 𝐹 )
6 funcnvcnv ( Fun 𝐹 → Fun 𝐹 )
7 imadif ( Fun 𝐹 → ( 𝐹 “ ( 𝐾𝐴 ) ) = ( ( 𝐹 𝐾 ) ∖ ( 𝐹𝐴 ) ) )
8 5 6 7 3syl ( 𝐹 : 𝐽 𝐾 → ( 𝐹 “ ( 𝐾𝐴 ) ) = ( ( 𝐹 𝐾 ) ∖ ( 𝐹𝐴 ) ) )
9 fimacnv ( 𝐹 : 𝐽 𝐾 → ( 𝐹 𝐾 ) = 𝐽 )
10 9 difeq1d ( 𝐹 : 𝐽 𝐾 → ( ( 𝐹 𝐾 ) ∖ ( 𝐹𝐴 ) ) = ( 𝐽 ∖ ( 𝐹𝐴 ) ) )
11 8 10 eqtr2d ( 𝐹 : 𝐽 𝐾 → ( 𝐽 ∖ ( 𝐹𝐴 ) ) = ( 𝐹 “ ( 𝐾𝐴 ) ) )
12 4 11 syl ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐾 ) ) → ( 𝐽 ∖ ( 𝐹𝐴 ) ) = ( 𝐹 “ ( 𝐾𝐴 ) ) )
13 2 cldopn ( 𝐴 ∈ ( Clsd ‘ 𝐾 ) → ( 𝐾𝐴 ) ∈ 𝐾 )
14 cnima ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐾𝐴 ) ∈ 𝐾 ) → ( 𝐹 “ ( 𝐾𝐴 ) ) ∈ 𝐽 )
15 13 14 sylan2 ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐾 ) ) → ( 𝐹 “ ( 𝐾𝐴 ) ) ∈ 𝐽 )
16 12 15 eqeltrd ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐾 ) ) → ( 𝐽 ∖ ( 𝐹𝐴 ) ) ∈ 𝐽 )
17 cntop1 ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top )
18 cnvimass ( 𝐹𝐴 ) ⊆ dom 𝐹
19 18 4 fssdm ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐾 ) ) → ( 𝐹𝐴 ) ⊆ 𝐽 )
20 1 iscld2 ( ( 𝐽 ∈ Top ∧ ( 𝐹𝐴 ) ⊆ 𝐽 ) → ( ( 𝐹𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝐽 ∖ ( 𝐹𝐴 ) ) ∈ 𝐽 ) )
21 17 19 20 syl2an2r ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐾 ) ) → ( ( 𝐹𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝐽 ∖ ( 𝐹𝐴 ) ) ∈ 𝐽 ) )
22 16 21 mpbird ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ ( Clsd ‘ 𝐾 ) ) → ( 𝐹𝐴 ) ∈ ( Clsd ‘ 𝐽 ) )