Step |
Hyp |
Ref |
Expression |
1 |
|
cnf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
2 |
1
|
3expia |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) ) |
3 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋 ) |
4 |
3
|
adantl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → 𝑥 ⊆ 𝑋 ) |
5 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
6 |
5
|
ad2antrr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
7 |
4 6
|
sseqtrd |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → 𝑥 ⊆ ∪ 𝐽 ) |
8 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
9 |
8
|
cnclsi |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑥 ⊆ ∪ 𝐽 ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑥 ) ) ) |
10 |
9
|
expcom |
⊢ ( 𝑥 ⊆ ∪ 𝐽 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑥 ) ) ) ) |
11 |
7 10
|
syl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑥 ) ) ) ) |
12 |
11
|
ralrimdva |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑥 ) ) ) ) |
13 |
2 12
|
jcad |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑥 ) ) ) ) ) |
14 |
|
toponmax |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) |
15 |
14
|
ad3antrrr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → 𝑋 ∈ 𝐽 ) |
16 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ 𝑦 ) ⊆ dom 𝐹 |
17 |
|
fdm |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → dom 𝐹 = 𝑋 ) |
18 |
17
|
ad2antlr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → dom 𝐹 = 𝑋 ) |
19 |
16 18
|
sseqtrid |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → ( ◡ 𝐹 “ 𝑦 ) ⊆ 𝑋 ) |
20 |
15 19
|
sselpwd |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → ( ◡ 𝐹 “ 𝑦 ) ∈ 𝒫 𝑋 ) |
21 |
|
fveq2 |
⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ) |
22 |
21
|
imaeq2d |
⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) = ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ) ) |
23 |
|
imaeq2 |
⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) |
24 |
23
|
fveq2d |
⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑥 ) ) = ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) ) |
25 |
22 24
|
sseq12d |
⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑥 ) ) ↔ ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) |
26 |
25
|
rspcv |
⊢ ( ( ◡ 𝐹 “ 𝑦 ) ∈ 𝒫 𝑋 → ( ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑥 ) ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) |
27 |
20 26
|
syl |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → ( ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑥 ) ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) |
28 |
|
topontop |
⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝐾 ∈ Top ) |
29 |
28
|
ad3antlr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → 𝐾 ∈ Top ) |
30 |
|
elpwi |
⊢ ( 𝑦 ∈ 𝒫 𝑌 → 𝑦 ⊆ 𝑌 ) |
31 |
30
|
adantl |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → 𝑦 ⊆ 𝑌 ) |
32 |
|
toponuni |
⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 = ∪ 𝐾 ) |
33 |
32
|
ad3antlr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → 𝑌 = ∪ 𝐾 ) |
34 |
31 33
|
sseqtrd |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → 𝑦 ⊆ ∪ 𝐾 ) |
35 |
|
ffun |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → Fun 𝐹 ) |
36 |
35
|
ad2antlr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → Fun 𝐹 ) |
37 |
|
funimacnv |
⊢ ( Fun 𝐹 → ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) = ( 𝑦 ∩ ran 𝐹 ) ) |
38 |
36 37
|
syl |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) = ( 𝑦 ∩ ran 𝐹 ) ) |
39 |
|
inss1 |
⊢ ( 𝑦 ∩ ran 𝐹 ) ⊆ 𝑦 |
40 |
38 39
|
eqsstrdi |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ⊆ 𝑦 ) |
41 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
42 |
41
|
clsss |
⊢ ( ( 𝐾 ∈ Top ∧ 𝑦 ⊆ ∪ 𝐾 ∧ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ⊆ 𝑦 ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ 𝑦 ) ) |
43 |
29 34 40 42
|
syl3anc |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ 𝑦 ) ) |
44 |
|
sstr2 |
⊢ ( ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) → ( ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ 𝑦 ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ 𝑦 ) ) ) |
45 |
43 44
|
syl5com |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → ( ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ 𝑦 ) ) ) |
46 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
47 |
46
|
ad3antrrr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → 𝐽 ∈ Top ) |
48 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → 𝑋 = ∪ 𝐽 ) |
49 |
18 48
|
eqtrd |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → dom 𝐹 = ∪ 𝐽 ) |
50 |
16 49
|
sseqtrid |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → ( ◡ 𝐹 “ 𝑦 ) ⊆ ∪ 𝐽 ) |
51 |
8
|
clsss3 |
⊢ ( ( 𝐽 ∈ Top ∧ ( ◡ 𝐹 “ 𝑦 ) ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ⊆ ∪ 𝐽 ) |
52 |
47 50 51
|
syl2anc |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ⊆ ∪ 𝐽 ) |
53 |
52 49
|
sseqtrrd |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ⊆ dom 𝐹 ) |
54 |
|
funimass3 |
⊢ ( ( Fun 𝐹 ∧ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ⊆ dom 𝐹 ) → ( ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ 𝑦 ) ↔ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑦 ) ) ) ) |
55 |
36 53 54
|
syl2anc |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → ( ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ 𝑦 ) ↔ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑦 ) ) ) ) |
56 |
45 55
|
sylibd |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → ( ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) → ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑦 ) ) ) ) |
57 |
27 56
|
syld |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → ( ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑥 ) ) → ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑦 ) ) ) ) |
58 |
57
|
ralrimdva |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑥 ) ) → ∀ 𝑦 ∈ 𝒫 𝑌 ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑦 ) ) ) ) |
59 |
58
|
imdistanda |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑥 ) ) ) → ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝒫 𝑌 ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑦 ) ) ) ) ) |
60 |
|
cncls2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝒫 𝑌 ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑦 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑦 ) ) ) ) ) |
61 |
59 60
|
sylibrd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑥 ) ) ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ) |
62 |
13 61
|
impbid |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑥 ) ) ) ) ) |