Step |
Hyp |
Ref |
Expression |
1 |
|
cnclsi.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
cntop1 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) |
3 |
2
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝐽 ∈ Top ) |
4 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ⊆ dom 𝐹 |
5 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
6 |
1 5
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝑋 ⟶ ∪ 𝐾 ) |
7 |
6
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝐹 : 𝑋 ⟶ ∪ 𝐾 ) |
8 |
4 7
|
fssdm |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ⊆ 𝑋 ) |
9 |
|
simpr |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ⊆ 𝑋 ) |
10 |
7
|
fdmd |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → dom 𝐹 = 𝑋 ) |
11 |
9 10
|
sseqtrrd |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ⊆ dom 𝐹 ) |
12 |
|
sseqin2 |
⊢ ( 𝑆 ⊆ dom 𝐹 ↔ ( dom 𝐹 ∩ 𝑆 ) = 𝑆 ) |
13 |
11 12
|
sylib |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → ( dom 𝐹 ∩ 𝑆 ) = 𝑆 ) |
14 |
|
dminss |
⊢ ( dom 𝐹 ∩ 𝑆 ) ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) |
15 |
13 14
|
eqsstrrdi |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ) |
16 |
1
|
clsss |
⊢ ( ( 𝐽 ∈ Top ∧ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ⊆ 𝑋 ∧ 𝑆 ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ) ) |
17 |
3 8 15 16
|
syl3anc |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ) ) |
18 |
|
imassrn |
⊢ ( 𝐹 “ 𝑆 ) ⊆ ran 𝐹 |
19 |
7
|
frnd |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → ran 𝐹 ⊆ ∪ 𝐾 ) |
20 |
18 19
|
sstrid |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐹 “ 𝑆 ) ⊆ ∪ 𝐾 ) |
21 |
5
|
cncls2i |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐹 “ 𝑆 ) ⊆ ∪ 𝐾 ) → ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑆 ) ) ) ) |
22 |
20 21
|
syldan |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑆 ) ) ) ) |
23 |
17 22
|
sstrd |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑆 ) ) ) ) |
24 |
7
|
ffund |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → Fun 𝐹 ) |
25 |
1
|
clsss3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ) |
26 |
2 25
|
sylan |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ) |
27 |
26 10
|
sseqtrrd |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ dom 𝐹 ) |
28 |
|
funimass3 |
⊢ ( ( Fun 𝐹 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ dom 𝐹 ) → ( ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑆 ) ) ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑆 ) ) ) ) ) |
29 |
24 27 28
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑆 ) ) ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑆 ) ) ) ) ) |
30 |
23 29
|
mpbird |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑆 ) ) ) |