Step |
Hyp |
Ref |
Expression |
1 |
|
cncmet.1 |
⊢ 𝐷 = ( abs ∘ − ) |
2 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
3 |
2
|
cnfldtopn |
⊢ ( TopOpen ‘ ℂfld ) = ( MetOpen ‘ ( abs ∘ − ) ) |
4 |
1
|
fveq2i |
⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ ( abs ∘ − ) ) |
5 |
3 4
|
eqtr4i |
⊢ ( TopOpen ‘ ℂfld ) = ( MetOpen ‘ 𝐷 ) |
6 |
|
cnmet |
⊢ ( abs ∘ − ) ∈ ( Met ‘ ℂ ) |
7 |
1 6
|
eqeltri |
⊢ 𝐷 ∈ ( Met ‘ ℂ ) |
8 |
7
|
a1i |
⊢ ( ⊤ → 𝐷 ∈ ( Met ‘ ℂ ) ) |
9 |
|
1rp |
⊢ 1 ∈ ℝ+ |
10 |
9
|
a1i |
⊢ ( ⊤ → 1 ∈ ℝ+ ) |
11 |
2
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
12 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ ℂ ) → 𝐷 ∈ ( ∞Met ‘ ℂ ) ) |
13 |
7 12
|
ax-mp |
⊢ 𝐷 ∈ ( ∞Met ‘ ℂ ) |
14 |
|
1xr |
⊢ 1 ∈ ℝ* |
15 |
|
blssm |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ ℂ ) ∧ 𝑥 ∈ ℂ ∧ 1 ∈ ℝ* ) → ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ ℂ ) |
16 |
13 14 15
|
mp3an13 |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ ℂ ) |
17 |
|
unicntop |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
18 |
17
|
clscld |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ ℂ ) → ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) |
19 |
11 16 18
|
sylancr |
⊢ ( 𝑥 ∈ ℂ → ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) |
20 |
|
abscl |
⊢ ( 𝑥 ∈ ℂ → ( abs ‘ 𝑥 ) ∈ ℝ ) |
21 |
|
peano2re |
⊢ ( ( abs ‘ 𝑥 ) ∈ ℝ → ( ( abs ‘ 𝑥 ) + 1 ) ∈ ℝ ) |
22 |
20 21
|
syl |
⊢ ( 𝑥 ∈ ℂ → ( ( abs ‘ 𝑥 ) + 1 ) ∈ ℝ ) |
23 |
|
df-rab |
⊢ { 𝑦 ∈ ℂ ∣ ( 𝑥 𝐷 𝑦 ) ≤ 1 } = { 𝑦 ∣ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) } |
24 |
23
|
eqcomi |
⊢ { 𝑦 ∣ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) } = { 𝑦 ∈ ℂ ∣ ( 𝑥 𝐷 𝑦 ) ≤ 1 } |
25 |
5 24
|
blcls |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ ℂ ) ∧ 𝑥 ∈ ℂ ∧ 1 ∈ ℝ* ) → ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ⊆ { 𝑦 ∣ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) } ) |
26 |
13 14 25
|
mp3an13 |
⊢ ( 𝑥 ∈ ℂ → ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ⊆ { 𝑦 ∣ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) } ) |
27 |
|
abscl |
⊢ ( 𝑦 ∈ ℂ → ( abs ‘ 𝑦 ) ∈ ℝ ) |
28 |
27
|
ad2antrl |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) ) → ( abs ‘ 𝑦 ) ∈ ℝ ) |
29 |
20
|
adantr |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) ) → ( abs ‘ 𝑥 ) ∈ ℝ ) |
30 |
28 29
|
resubcld |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) ) → ( ( abs ‘ 𝑦 ) − ( abs ‘ 𝑥 ) ) ∈ ℝ ) |
31 |
|
simpl |
⊢ ( ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) → 𝑦 ∈ ℂ ) |
32 |
|
id |
⊢ ( 𝑥 ∈ ℂ → 𝑥 ∈ ℂ ) |
33 |
|
subcl |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑦 − 𝑥 ) ∈ ℂ ) |
34 |
31 32 33
|
syl2anr |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) ) → ( 𝑦 − 𝑥 ) ∈ ℂ ) |
35 |
34
|
abscld |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) ) → ( abs ‘ ( 𝑦 − 𝑥 ) ) ∈ ℝ ) |
36 |
|
1red |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) ) → 1 ∈ ℝ ) |
37 |
|
simprl |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) ) → 𝑦 ∈ ℂ ) |
38 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) ) → 𝑥 ∈ ℂ ) |
39 |
37 38
|
abs2difd |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) ) → ( ( abs ‘ 𝑦 ) − ( abs ‘ 𝑥 ) ) ≤ ( abs ‘ ( 𝑦 − 𝑥 ) ) ) |
40 |
1
|
cnmetdval |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 𝐷 𝑦 ) = ( abs ‘ ( 𝑥 − 𝑦 ) ) ) |
41 |
|
abssub |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) = ( abs ‘ ( 𝑦 − 𝑥 ) ) ) |
42 |
40 41
|
eqtrd |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 𝐷 𝑦 ) = ( abs ‘ ( 𝑦 − 𝑥 ) ) ) |
43 |
42
|
adantrr |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) ) → ( 𝑥 𝐷 𝑦 ) = ( abs ‘ ( 𝑦 − 𝑥 ) ) ) |
44 |
|
simprr |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) ) → ( 𝑥 𝐷 𝑦 ) ≤ 1 ) |
45 |
43 44
|
eqbrtrrd |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) ) → ( abs ‘ ( 𝑦 − 𝑥 ) ) ≤ 1 ) |
46 |
30 35 36 39 45
|
letrd |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) ) → ( ( abs ‘ 𝑦 ) − ( abs ‘ 𝑥 ) ) ≤ 1 ) |
47 |
28 29 36
|
lesubadd2d |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) ) → ( ( ( abs ‘ 𝑦 ) − ( abs ‘ 𝑥 ) ) ≤ 1 ↔ ( abs ‘ 𝑦 ) ≤ ( ( abs ‘ 𝑥 ) + 1 ) ) ) |
48 |
46 47
|
mpbid |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) ) → ( abs ‘ 𝑦 ) ≤ ( ( abs ‘ 𝑥 ) + 1 ) ) |
49 |
48
|
ex |
⊢ ( 𝑥 ∈ ℂ → ( ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) → ( abs ‘ 𝑦 ) ≤ ( ( abs ‘ 𝑥 ) + 1 ) ) ) |
50 |
49
|
ss2abdv |
⊢ ( 𝑥 ∈ ℂ → { 𝑦 ∣ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) } ⊆ { 𝑦 ∣ ( abs ‘ 𝑦 ) ≤ ( ( abs ‘ 𝑥 ) + 1 ) } ) |
51 |
26 50
|
sstrd |
⊢ ( 𝑥 ∈ ℂ → ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ⊆ { 𝑦 ∣ ( abs ‘ 𝑦 ) ≤ ( ( abs ‘ 𝑥 ) + 1 ) } ) |
52 |
|
ssabral |
⊢ ( ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ⊆ { 𝑦 ∣ ( abs ‘ 𝑦 ) ≤ ( ( abs ‘ 𝑥 ) + 1 ) } ↔ ∀ 𝑦 ∈ ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ( abs ‘ 𝑦 ) ≤ ( ( abs ‘ 𝑥 ) + 1 ) ) |
53 |
51 52
|
sylib |
⊢ ( 𝑥 ∈ ℂ → ∀ 𝑦 ∈ ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ( abs ‘ 𝑦 ) ≤ ( ( abs ‘ 𝑥 ) + 1 ) ) |
54 |
|
brralrspcev |
⊢ ( ( ( ( abs ‘ 𝑥 ) + 1 ) ∈ ℝ ∧ ∀ 𝑦 ∈ ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ( abs ‘ 𝑦 ) ≤ ( ( abs ‘ 𝑥 ) + 1 ) ) → ∃ 𝑟 ∈ ℝ ∀ 𝑦 ∈ ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ( abs ‘ 𝑦 ) ≤ 𝑟 ) |
55 |
22 53 54
|
syl2anc |
⊢ ( 𝑥 ∈ ℂ → ∃ 𝑟 ∈ ℝ ∀ 𝑦 ∈ ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ( abs ‘ 𝑦 ) ≤ 𝑟 ) |
56 |
17
|
clsss3 |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ ℂ ) → ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ⊆ ℂ ) |
57 |
11 16 56
|
sylancr |
⊢ ( 𝑥 ∈ ℂ → ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ⊆ ℂ ) |
58 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ) |
59 |
2 58
|
cnheibor |
⊢ ( ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ⊆ ℂ → ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ) ∈ Comp ↔ ( ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ∧ ∃ 𝑟 ∈ ℝ ∀ 𝑦 ∈ ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ( abs ‘ 𝑦 ) ≤ 𝑟 ) ) ) |
60 |
57 59
|
syl |
⊢ ( 𝑥 ∈ ℂ → ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ) ∈ Comp ↔ ( ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ∧ ∃ 𝑟 ∈ ℝ ∀ 𝑦 ∈ ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ( abs ‘ 𝑦 ) ≤ 𝑟 ) ) ) |
61 |
19 55 60
|
mpbir2and |
⊢ ( 𝑥 ∈ ℂ → ( ( TopOpen ‘ ℂfld ) ↾t ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ) ∈ Comp ) |
62 |
61
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ) ∈ Comp ) |
63 |
5 8 10 62
|
relcmpcmet |
⊢ ( ⊤ → 𝐷 ∈ ( CMet ‘ ℂ ) ) |
64 |
63
|
mptru |
⊢ 𝐷 ∈ ( CMet ‘ ℂ ) |