| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cncmet.1 | ⊢ 𝐷  =  ( abs  ∘   −  ) | 
						
							| 2 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 3 | 2 | cnfldtopn | ⊢ ( TopOpen ‘ ℂfld )  =  ( MetOpen ‘ ( abs  ∘   −  ) ) | 
						
							| 4 | 1 | fveq2i | ⊢ ( MetOpen ‘ 𝐷 )  =  ( MetOpen ‘ ( abs  ∘   −  ) ) | 
						
							| 5 | 3 4 | eqtr4i | ⊢ ( TopOpen ‘ ℂfld )  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 6 |  | cnmet | ⊢ ( abs  ∘   −  )  ∈  ( Met ‘ ℂ ) | 
						
							| 7 | 1 6 | eqeltri | ⊢ 𝐷  ∈  ( Met ‘ ℂ ) | 
						
							| 8 | 7 | a1i | ⊢ ( ⊤  →  𝐷  ∈  ( Met ‘ ℂ ) ) | 
						
							| 9 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 10 | 9 | a1i | ⊢ ( ⊤  →  1  ∈  ℝ+ ) | 
						
							| 11 | 2 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld )  ∈  Top | 
						
							| 12 |  | metxmet | ⊢ ( 𝐷  ∈  ( Met ‘ ℂ )  →  𝐷  ∈  ( ∞Met ‘ ℂ ) ) | 
						
							| 13 | 7 12 | ax-mp | ⊢ 𝐷  ∈  ( ∞Met ‘ ℂ ) | 
						
							| 14 |  | 1xr | ⊢ 1  ∈  ℝ* | 
						
							| 15 |  | blssm | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ ℂ )  ∧  𝑥  ∈  ℂ  ∧  1  ∈  ℝ* )  →  ( 𝑥 ( ball ‘ 𝐷 ) 1 )  ⊆  ℂ ) | 
						
							| 16 | 13 14 15 | mp3an13 | ⊢ ( 𝑥  ∈  ℂ  →  ( 𝑥 ( ball ‘ 𝐷 ) 1 )  ⊆  ℂ ) | 
						
							| 17 |  | unicntop | ⊢ ℂ  =  ∪  ( TopOpen ‘ ℂfld ) | 
						
							| 18 | 17 | clscld | ⊢ ( ( ( TopOpen ‘ ℂfld )  ∈  Top  ∧  ( 𝑥 ( ball ‘ 𝐷 ) 1 )  ⊆  ℂ )  →  ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) )  ∈  ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 19 | 11 16 18 | sylancr | ⊢ ( 𝑥  ∈  ℂ  →  ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) )  ∈  ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 20 |  | abscl | ⊢ ( 𝑥  ∈  ℂ  →  ( abs ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 21 |  | peano2re | ⊢ ( ( abs ‘ 𝑥 )  ∈  ℝ  →  ( ( abs ‘ 𝑥 )  +  1 )  ∈  ℝ ) | 
						
							| 22 | 20 21 | syl | ⊢ ( 𝑥  ∈  ℂ  →  ( ( abs ‘ 𝑥 )  +  1 )  ∈  ℝ ) | 
						
							| 23 |  | df-rab | ⊢ { 𝑦  ∈  ℂ  ∣  ( 𝑥 𝐷 𝑦 )  ≤  1 }  =  { 𝑦  ∣  ( 𝑦  ∈  ℂ  ∧  ( 𝑥 𝐷 𝑦 )  ≤  1 ) } | 
						
							| 24 | 23 | eqcomi | ⊢ { 𝑦  ∣  ( 𝑦  ∈  ℂ  ∧  ( 𝑥 𝐷 𝑦 )  ≤  1 ) }  =  { 𝑦  ∈  ℂ  ∣  ( 𝑥 𝐷 𝑦 )  ≤  1 } | 
						
							| 25 | 5 24 | blcls | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ ℂ )  ∧  𝑥  ∈  ℂ  ∧  1  ∈  ℝ* )  →  ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) )  ⊆  { 𝑦  ∣  ( 𝑦  ∈  ℂ  ∧  ( 𝑥 𝐷 𝑦 )  ≤  1 ) } ) | 
						
							| 26 | 13 14 25 | mp3an13 | ⊢ ( 𝑥  ∈  ℂ  →  ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) )  ⊆  { 𝑦  ∣  ( 𝑦  ∈  ℂ  ∧  ( 𝑥 𝐷 𝑦 )  ≤  1 ) } ) | 
						
							| 27 |  | abscl | ⊢ ( 𝑦  ∈  ℂ  →  ( abs ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 28 | 27 | ad2antrl | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( 𝑦  ∈  ℂ  ∧  ( 𝑥 𝐷 𝑦 )  ≤  1 ) )  →  ( abs ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 29 | 20 | adantr | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( 𝑦  ∈  ℂ  ∧  ( 𝑥 𝐷 𝑦 )  ≤  1 ) )  →  ( abs ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 30 | 28 29 | resubcld | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( 𝑦  ∈  ℂ  ∧  ( 𝑥 𝐷 𝑦 )  ≤  1 ) )  →  ( ( abs ‘ 𝑦 )  −  ( abs ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 31 |  | simpl | ⊢ ( ( 𝑦  ∈  ℂ  ∧  ( 𝑥 𝐷 𝑦 )  ≤  1 )  →  𝑦  ∈  ℂ ) | 
						
							| 32 |  | id | ⊢ ( 𝑥  ∈  ℂ  →  𝑥  ∈  ℂ ) | 
						
							| 33 |  | subcl | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑥  ∈  ℂ )  →  ( 𝑦  −  𝑥 )  ∈  ℂ ) | 
						
							| 34 | 31 32 33 | syl2anr | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( 𝑦  ∈  ℂ  ∧  ( 𝑥 𝐷 𝑦 )  ≤  1 ) )  →  ( 𝑦  −  𝑥 )  ∈  ℂ ) | 
						
							| 35 | 34 | abscld | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( 𝑦  ∈  ℂ  ∧  ( 𝑥 𝐷 𝑦 )  ≤  1 ) )  →  ( abs ‘ ( 𝑦  −  𝑥 ) )  ∈  ℝ ) | 
						
							| 36 |  | 1red | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( 𝑦  ∈  ℂ  ∧  ( 𝑥 𝐷 𝑦 )  ≤  1 ) )  →  1  ∈  ℝ ) | 
						
							| 37 |  | simprl | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( 𝑦  ∈  ℂ  ∧  ( 𝑥 𝐷 𝑦 )  ≤  1 ) )  →  𝑦  ∈  ℂ ) | 
						
							| 38 |  | simpl | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( 𝑦  ∈  ℂ  ∧  ( 𝑥 𝐷 𝑦 )  ≤  1 ) )  →  𝑥  ∈  ℂ ) | 
						
							| 39 | 37 38 | abs2difd | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( 𝑦  ∈  ℂ  ∧  ( 𝑥 𝐷 𝑦 )  ≤  1 ) )  →  ( ( abs ‘ 𝑦 )  −  ( abs ‘ 𝑥 ) )  ≤  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) | 
						
							| 40 | 1 | cnmetdval | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 𝑥 𝐷 𝑦 )  =  ( abs ‘ ( 𝑥  −  𝑦 ) ) ) | 
						
							| 41 |  | abssub | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( abs ‘ ( 𝑥  −  𝑦 ) )  =  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) | 
						
							| 42 | 40 41 | eqtrd | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 𝑥 𝐷 𝑦 )  =  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) | 
						
							| 43 | 42 | adantrr | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( 𝑦  ∈  ℂ  ∧  ( 𝑥 𝐷 𝑦 )  ≤  1 ) )  →  ( 𝑥 𝐷 𝑦 )  =  ( abs ‘ ( 𝑦  −  𝑥 ) ) ) | 
						
							| 44 |  | simprr | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( 𝑦  ∈  ℂ  ∧  ( 𝑥 𝐷 𝑦 )  ≤  1 ) )  →  ( 𝑥 𝐷 𝑦 )  ≤  1 ) | 
						
							| 45 | 43 44 | eqbrtrrd | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( 𝑦  ∈  ℂ  ∧  ( 𝑥 𝐷 𝑦 )  ≤  1 ) )  →  ( abs ‘ ( 𝑦  −  𝑥 ) )  ≤  1 ) | 
						
							| 46 | 30 35 36 39 45 | letrd | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( 𝑦  ∈  ℂ  ∧  ( 𝑥 𝐷 𝑦 )  ≤  1 ) )  →  ( ( abs ‘ 𝑦 )  −  ( abs ‘ 𝑥 ) )  ≤  1 ) | 
						
							| 47 | 28 29 36 | lesubadd2d | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( 𝑦  ∈  ℂ  ∧  ( 𝑥 𝐷 𝑦 )  ≤  1 ) )  →  ( ( ( abs ‘ 𝑦 )  −  ( abs ‘ 𝑥 ) )  ≤  1  ↔  ( abs ‘ 𝑦 )  ≤  ( ( abs ‘ 𝑥 )  +  1 ) ) ) | 
						
							| 48 | 46 47 | mpbid | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( 𝑦  ∈  ℂ  ∧  ( 𝑥 𝐷 𝑦 )  ≤  1 ) )  →  ( abs ‘ 𝑦 )  ≤  ( ( abs ‘ 𝑥 )  +  1 ) ) | 
						
							| 49 | 48 | ex | ⊢ ( 𝑥  ∈  ℂ  →  ( ( 𝑦  ∈  ℂ  ∧  ( 𝑥 𝐷 𝑦 )  ≤  1 )  →  ( abs ‘ 𝑦 )  ≤  ( ( abs ‘ 𝑥 )  +  1 ) ) ) | 
						
							| 50 | 49 | ss2abdv | ⊢ ( 𝑥  ∈  ℂ  →  { 𝑦  ∣  ( 𝑦  ∈  ℂ  ∧  ( 𝑥 𝐷 𝑦 )  ≤  1 ) }  ⊆  { 𝑦  ∣  ( abs ‘ 𝑦 )  ≤  ( ( abs ‘ 𝑥 )  +  1 ) } ) | 
						
							| 51 | 26 50 | sstrd | ⊢ ( 𝑥  ∈  ℂ  →  ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) )  ⊆  { 𝑦  ∣  ( abs ‘ 𝑦 )  ≤  ( ( abs ‘ 𝑥 )  +  1 ) } ) | 
						
							| 52 |  | ssabral | ⊢ ( ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) )  ⊆  { 𝑦  ∣  ( abs ‘ 𝑦 )  ≤  ( ( abs ‘ 𝑥 )  +  1 ) }  ↔  ∀ 𝑦  ∈  ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ( abs ‘ 𝑦 )  ≤  ( ( abs ‘ 𝑥 )  +  1 ) ) | 
						
							| 53 | 51 52 | sylib | ⊢ ( 𝑥  ∈  ℂ  →  ∀ 𝑦  ∈  ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ( abs ‘ 𝑦 )  ≤  ( ( abs ‘ 𝑥 )  +  1 ) ) | 
						
							| 54 |  | brralrspcev | ⊢ ( ( ( ( abs ‘ 𝑥 )  +  1 )  ∈  ℝ  ∧  ∀ 𝑦  ∈  ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ( abs ‘ 𝑦 )  ≤  ( ( abs ‘ 𝑥 )  +  1 ) )  →  ∃ 𝑟  ∈  ℝ ∀ 𝑦  ∈  ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ( abs ‘ 𝑦 )  ≤  𝑟 ) | 
						
							| 55 | 22 53 54 | syl2anc | ⊢ ( 𝑥  ∈  ℂ  →  ∃ 𝑟  ∈  ℝ ∀ 𝑦  ∈  ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ( abs ‘ 𝑦 )  ≤  𝑟 ) | 
						
							| 56 | 17 | clsss3 | ⊢ ( ( ( TopOpen ‘ ℂfld )  ∈  Top  ∧  ( 𝑥 ( ball ‘ 𝐷 ) 1 )  ⊆  ℂ )  →  ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) )  ⊆  ℂ ) | 
						
							| 57 | 11 16 56 | sylancr | ⊢ ( 𝑥  ∈  ℂ  →  ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) )  ⊆  ℂ ) | 
						
							| 58 |  | eqid | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ) | 
						
							| 59 | 2 58 | cnheibor | ⊢ ( ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) )  ⊆  ℂ  →  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) )  ∈  Comp  ↔  ( ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) )  ∈  ( Clsd ‘ ( TopOpen ‘ ℂfld ) )  ∧  ∃ 𝑟  ∈  ℝ ∀ 𝑦  ∈  ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ( abs ‘ 𝑦 )  ≤  𝑟 ) ) ) | 
						
							| 60 | 57 59 | syl | ⊢ ( 𝑥  ∈  ℂ  →  ( ( ( TopOpen ‘ ℂfld )  ↾t  ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) )  ∈  Comp  ↔  ( ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) )  ∈  ( Clsd ‘ ( TopOpen ‘ ℂfld ) )  ∧  ∃ 𝑟  ∈  ℝ ∀ 𝑦  ∈  ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ( abs ‘ 𝑦 )  ≤  𝑟 ) ) ) | 
						
							| 61 | 19 55 60 | mpbir2and | ⊢ ( 𝑥  ∈  ℂ  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) )  ∈  Comp ) | 
						
							| 62 | 61 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℂ )  →  ( ( TopOpen ‘ ℂfld )  ↾t  ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) )  ∈  Comp ) | 
						
							| 63 | 5 8 10 62 | relcmpcmet | ⊢ ( ⊤  →  𝐷  ∈  ( CMet ‘ ℂ ) ) | 
						
							| 64 | 63 | mptru | ⊢ 𝐷  ∈  ( CMet ‘ ℂ ) |