Step |
Hyp |
Ref |
Expression |
1 |
|
cncmp.2 |
⊢ 𝑌 = ∪ 𝐾 |
2 |
|
cntop2 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) |
3 |
2
|
3ad2ant3 |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐾 ∈ Top ) |
4 |
|
elpwi |
⊢ ( 𝑢 ∈ 𝒫 𝐾 → 𝑢 ⊆ 𝐾 ) |
5 |
|
simpl1 |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → 𝐽 ∈ Comp ) |
6 |
|
simpl3 |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
7 |
|
simprl |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → 𝑢 ⊆ 𝐾 ) |
8 |
7
|
sselda |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ 𝑦 ∈ 𝑢 ) → 𝑦 ∈ 𝐾 ) |
9 |
|
cnima |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑦 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) |
10 |
6 8 9
|
syl2an2r |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ 𝑦 ∈ 𝑢 ) → ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) |
11 |
10
|
fmpttd |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) : 𝑢 ⟶ 𝐽 ) |
12 |
11
|
frnd |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ⊆ 𝐽 ) |
13 |
|
simprr |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → 𝑌 = ∪ 𝑢 ) |
14 |
13
|
imaeq2d |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → ( ◡ 𝐹 “ 𝑌 ) = ( ◡ 𝐹 “ ∪ 𝑢 ) ) |
15 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
16 |
15 1
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) |
17 |
6 16
|
syl |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) |
18 |
|
fimacnv |
⊢ ( 𝐹 : ∪ 𝐽 ⟶ 𝑌 → ( ◡ 𝐹 “ 𝑌 ) = ∪ 𝐽 ) |
19 |
17 18
|
syl |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → ( ◡ 𝐹 “ 𝑌 ) = ∪ 𝐽 ) |
20 |
10
|
ralrimiva |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → ∀ 𝑦 ∈ 𝑢 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) |
21 |
|
dfiun2g |
⊢ ( ∀ 𝑦 ∈ 𝑢 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ∪ 𝑦 ∈ 𝑢 ( ◡ 𝐹 “ 𝑦 ) = ∪ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑢 𝑥 = ( ◡ 𝐹 “ 𝑦 ) } ) |
22 |
20 21
|
syl |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → ∪ 𝑦 ∈ 𝑢 ( ◡ 𝐹 “ 𝑦 ) = ∪ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑢 𝑥 = ( ◡ 𝐹 “ 𝑦 ) } ) |
23 |
|
imauni |
⊢ ( ◡ 𝐹 “ ∪ 𝑢 ) = ∪ 𝑦 ∈ 𝑢 ( ◡ 𝐹 “ 𝑦 ) |
24 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) = ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) |
25 |
24
|
rnmpt |
⊢ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) = { 𝑥 ∣ ∃ 𝑦 ∈ 𝑢 𝑥 = ( ◡ 𝐹 “ 𝑦 ) } |
26 |
25
|
unieqi |
⊢ ∪ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) = ∪ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑢 𝑥 = ( ◡ 𝐹 “ 𝑦 ) } |
27 |
22 23 26
|
3eqtr4g |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → ( ◡ 𝐹 “ ∪ 𝑢 ) = ∪ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ) |
28 |
14 19 27
|
3eqtr3d |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → ∪ 𝐽 = ∪ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ) |
29 |
15
|
cmpcov |
⊢ ( ( 𝐽 ∈ Comp ∧ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ) → ∃ 𝑠 ∈ ( 𝒫 ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∩ Fin ) ∪ 𝐽 = ∪ 𝑠 ) |
30 |
5 12 28 29
|
syl3anc |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → ∃ 𝑠 ∈ ( 𝒫 ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∩ Fin ) ∪ 𝐽 = ∪ 𝑠 ) |
31 |
|
elfpw |
⊢ ( 𝑠 ∈ ( 𝒫 ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∩ Fin ) ↔ ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ) |
32 |
|
simprll |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ) |
33 |
32
|
sselda |
⊢ ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) ∧ 𝑐 ∈ 𝑠 ) → 𝑐 ∈ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ) |
34 |
|
simpll2 |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ 𝑦 ∈ 𝑢 ) → 𝐹 : 𝑋 –onto→ 𝑌 ) |
35 |
|
elssuni |
⊢ ( 𝑦 ∈ 𝐾 → 𝑦 ⊆ ∪ 𝐾 ) |
36 |
35 1
|
sseqtrrdi |
⊢ ( 𝑦 ∈ 𝐾 → 𝑦 ⊆ 𝑌 ) |
37 |
8 36
|
syl |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ 𝑦 ∈ 𝑢 ) → 𝑦 ⊆ 𝑌 ) |
38 |
|
foimacnv |
⊢ ( ( 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝑦 ⊆ 𝑌 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) = 𝑦 ) |
39 |
34 37 38
|
syl2anc |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ 𝑦 ∈ 𝑢 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) = 𝑦 ) |
40 |
|
simpr |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ 𝑦 ∈ 𝑢 ) → 𝑦 ∈ 𝑢 ) |
41 |
39 40
|
eqeltrd |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ 𝑦 ∈ 𝑢 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ∈ 𝑢 ) |
42 |
41
|
ralrimiva |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → ∀ 𝑦 ∈ 𝑢 ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ∈ 𝑢 ) |
43 |
|
imaeq2 |
⊢ ( 𝑐 = ( ◡ 𝐹 “ 𝑦 ) → ( 𝐹 “ 𝑐 ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) |
44 |
43
|
eleq1d |
⊢ ( 𝑐 = ( ◡ 𝐹 “ 𝑦 ) → ( ( 𝐹 “ 𝑐 ) ∈ 𝑢 ↔ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ∈ 𝑢 ) ) |
45 |
24 44
|
ralrnmptw |
⊢ ( ∀ 𝑦 ∈ 𝑢 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ( ∀ 𝑐 ∈ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ( 𝐹 “ 𝑐 ) ∈ 𝑢 ↔ ∀ 𝑦 ∈ 𝑢 ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ∈ 𝑢 ) ) |
46 |
20 45
|
syl |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → ( ∀ 𝑐 ∈ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ( 𝐹 “ 𝑐 ) ∈ 𝑢 ↔ ∀ 𝑦 ∈ 𝑢 ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ∈ 𝑢 ) ) |
47 |
42 46
|
mpbird |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → ∀ 𝑐 ∈ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ( 𝐹 “ 𝑐 ) ∈ 𝑢 ) |
48 |
47
|
adantr |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → ∀ 𝑐 ∈ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ( 𝐹 “ 𝑐 ) ∈ 𝑢 ) |
49 |
48
|
r19.21bi |
⊢ ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) ∧ 𝑐 ∈ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ) → ( 𝐹 “ 𝑐 ) ∈ 𝑢 ) |
50 |
33 49
|
syldan |
⊢ ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) ∧ 𝑐 ∈ 𝑠 ) → ( 𝐹 “ 𝑐 ) ∈ 𝑢 ) |
51 |
50
|
fmpttd |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) : 𝑠 ⟶ 𝑢 ) |
52 |
51
|
frnd |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → ran ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) ⊆ 𝑢 ) |
53 |
|
simprlr |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → 𝑠 ∈ Fin ) |
54 |
|
eqid |
⊢ ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) = ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) |
55 |
54
|
rnmpt |
⊢ ran ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) = { 𝑑 ∣ ∃ 𝑐 ∈ 𝑠 𝑑 = ( 𝐹 “ 𝑐 ) } |
56 |
|
abrexfi |
⊢ ( 𝑠 ∈ Fin → { 𝑑 ∣ ∃ 𝑐 ∈ 𝑠 𝑑 = ( 𝐹 “ 𝑐 ) } ∈ Fin ) |
57 |
55 56
|
eqeltrid |
⊢ ( 𝑠 ∈ Fin → ran ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) ∈ Fin ) |
58 |
53 57
|
syl |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → ran ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) ∈ Fin ) |
59 |
|
elfpw |
⊢ ( ran ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) ∈ ( 𝒫 𝑢 ∩ Fin ) ↔ ( ran ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) ⊆ 𝑢 ∧ ran ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) ∈ Fin ) ) |
60 |
52 58 59
|
sylanbrc |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → ran ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) ∈ ( 𝒫 𝑢 ∩ Fin ) ) |
61 |
17
|
adantr |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) |
62 |
61
|
fdmd |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → dom 𝐹 = ∪ 𝐽 ) |
63 |
|
simpll2 |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → 𝐹 : 𝑋 –onto→ 𝑌 ) |
64 |
|
fof |
⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
65 |
|
fdm |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → dom 𝐹 = 𝑋 ) |
66 |
63 64 65
|
3syl |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → dom 𝐹 = 𝑋 ) |
67 |
|
simprr |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → ∪ 𝐽 = ∪ 𝑠 ) |
68 |
62 66 67
|
3eqtr3d |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → 𝑋 = ∪ 𝑠 ) |
69 |
68
|
imaeq2d |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → ( 𝐹 “ 𝑋 ) = ( 𝐹 “ ∪ 𝑠 ) ) |
70 |
|
foima |
⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → ( 𝐹 “ 𝑋 ) = 𝑌 ) |
71 |
63 70
|
syl |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → ( 𝐹 “ 𝑋 ) = 𝑌 ) |
72 |
50
|
ralrimiva |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → ∀ 𝑐 ∈ 𝑠 ( 𝐹 “ 𝑐 ) ∈ 𝑢 ) |
73 |
|
dfiun2g |
⊢ ( ∀ 𝑐 ∈ 𝑠 ( 𝐹 “ 𝑐 ) ∈ 𝑢 → ∪ 𝑐 ∈ 𝑠 ( 𝐹 “ 𝑐 ) = ∪ { 𝑑 ∣ ∃ 𝑐 ∈ 𝑠 𝑑 = ( 𝐹 “ 𝑐 ) } ) |
74 |
72 73
|
syl |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → ∪ 𝑐 ∈ 𝑠 ( 𝐹 “ 𝑐 ) = ∪ { 𝑑 ∣ ∃ 𝑐 ∈ 𝑠 𝑑 = ( 𝐹 “ 𝑐 ) } ) |
75 |
|
imauni |
⊢ ( 𝐹 “ ∪ 𝑠 ) = ∪ 𝑐 ∈ 𝑠 ( 𝐹 “ 𝑐 ) |
76 |
55
|
unieqi |
⊢ ∪ ran ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) = ∪ { 𝑑 ∣ ∃ 𝑐 ∈ 𝑠 𝑑 = ( 𝐹 “ 𝑐 ) } |
77 |
74 75 76
|
3eqtr4g |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → ( 𝐹 “ ∪ 𝑠 ) = ∪ ran ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) ) |
78 |
69 71 77
|
3eqtr3d |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → 𝑌 = ∪ ran ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) ) |
79 |
|
unieq |
⊢ ( 𝑣 = ran ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) → ∪ 𝑣 = ∪ ran ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) ) |
80 |
79
|
rspceeqv |
⊢ ( ( ran ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ 𝑌 = ∪ ran ( 𝑐 ∈ 𝑠 ↦ ( 𝐹 “ 𝑐 ) ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑌 = ∪ 𝑣 ) |
81 |
60 78 80
|
syl2anc |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑠 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑌 = ∪ 𝑣 ) |
82 |
81
|
expr |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ ( 𝑠 ⊆ ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∧ 𝑠 ∈ Fin ) ) → ( ∪ 𝐽 = ∪ 𝑠 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑌 = ∪ 𝑣 ) ) |
83 |
31 82
|
sylan2b |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) ∧ 𝑠 ∈ ( 𝒫 ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∩ Fin ) ) → ( ∪ 𝐽 = ∪ 𝑠 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑌 = ∪ 𝑣 ) ) |
84 |
83
|
rexlimdva |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → ( ∃ 𝑠 ∈ ( 𝒫 ran ( 𝑦 ∈ 𝑢 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ∩ Fin ) ∪ 𝐽 = ∪ 𝑠 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑌 = ∪ 𝑣 ) ) |
85 |
30 84
|
mpd |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ⊆ 𝐾 ∧ 𝑌 = ∪ 𝑢 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑌 = ∪ 𝑣 ) |
86 |
85
|
expr |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑢 ⊆ 𝐾 ) → ( 𝑌 = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑌 = ∪ 𝑣 ) ) |
87 |
4 86
|
sylan2 |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑢 ∈ 𝒫 𝐾 ) → ( 𝑌 = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑌 = ∪ 𝑣 ) ) |
88 |
87
|
ralrimiva |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ∀ 𝑢 ∈ 𝒫 𝐾 ( 𝑌 = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑌 = ∪ 𝑣 ) ) |
89 |
1
|
iscmp |
⊢ ( 𝐾 ∈ Comp ↔ ( 𝐾 ∈ Top ∧ ∀ 𝑢 ∈ 𝒫 𝐾 ( 𝑌 = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑌 = ∪ 𝑣 ) ) ) |
90 |
3 88 89
|
sylanbrc |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐾 ∈ Comp ) |