Step |
Hyp |
Ref |
Expression |
1 |
|
cnfldms |
⊢ ℂfld ∈ MetSp |
2 |
|
eqid |
⊢ ( abs ∘ − ) = ( abs ∘ − ) |
3 |
2
|
cncmet |
⊢ ( abs ∘ − ) ∈ ( CMet ‘ ℂ ) |
4 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
5 |
|
cnmet |
⊢ ( abs ∘ − ) ∈ ( Met ‘ ℂ ) |
6 |
|
metf |
⊢ ( ( abs ∘ − ) ∈ ( Met ‘ ℂ ) → ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ ) |
7 |
5 6
|
ax-mp |
⊢ ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ |
8 |
|
ffn |
⊢ ( ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ → ( abs ∘ − ) Fn ( ℂ × ℂ ) ) |
9 |
|
fnresdm |
⊢ ( ( abs ∘ − ) Fn ( ℂ × ℂ ) → ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) = ( abs ∘ − ) ) |
10 |
7 8 9
|
mp2b |
⊢ ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) = ( abs ∘ − ) |
11 |
|
cnfldds |
⊢ ( abs ∘ − ) = ( dist ‘ ℂfld ) |
12 |
11
|
reseq1i |
⊢ ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) = ( ( dist ‘ ℂfld ) ↾ ( ℂ × ℂ ) ) |
13 |
10 12
|
eqtr3i |
⊢ ( abs ∘ − ) = ( ( dist ‘ ℂfld ) ↾ ( ℂ × ℂ ) ) |
14 |
4 13
|
iscms |
⊢ ( ℂfld ∈ CMetSp ↔ ( ℂfld ∈ MetSp ∧ ( abs ∘ − ) ∈ ( CMet ‘ ℂ ) ) ) |
15 |
1 3 14
|
mpbir2an |
⊢ ℂfld ∈ CMetSp |