| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnfldms | ⊢ ℂfld  ∈  MetSp | 
						
							| 2 |  | eqid | ⊢ ( abs  ∘   −  )  =  ( abs  ∘   −  ) | 
						
							| 3 | 2 | cncmet | ⊢ ( abs  ∘   −  )  ∈  ( CMet ‘ ℂ ) | 
						
							| 4 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 5 |  | cnmet | ⊢ ( abs  ∘   −  )  ∈  ( Met ‘ ℂ ) | 
						
							| 6 |  | metf | ⊢ ( ( abs  ∘   −  )  ∈  ( Met ‘ ℂ )  →  ( abs  ∘   −  ) : ( ℂ  ×  ℂ ) ⟶ ℝ ) | 
						
							| 7 | 5 6 | ax-mp | ⊢ ( abs  ∘   −  ) : ( ℂ  ×  ℂ ) ⟶ ℝ | 
						
							| 8 |  | ffn | ⊢ ( ( abs  ∘   −  ) : ( ℂ  ×  ℂ ) ⟶ ℝ  →  ( abs  ∘   −  )  Fn  ( ℂ  ×  ℂ ) ) | 
						
							| 9 |  | fnresdm | ⊢ ( ( abs  ∘   −  )  Fn  ( ℂ  ×  ℂ )  →  ( ( abs  ∘   −  )  ↾  ( ℂ  ×  ℂ ) )  =  ( abs  ∘   −  ) ) | 
						
							| 10 | 7 8 9 | mp2b | ⊢ ( ( abs  ∘   −  )  ↾  ( ℂ  ×  ℂ ) )  =  ( abs  ∘   −  ) | 
						
							| 11 |  | cnfldds | ⊢ ( abs  ∘   −  )  =  ( dist ‘ ℂfld ) | 
						
							| 12 | 11 | reseq1i | ⊢ ( ( abs  ∘   −  )  ↾  ( ℂ  ×  ℂ ) )  =  ( ( dist ‘ ℂfld )  ↾  ( ℂ  ×  ℂ ) ) | 
						
							| 13 | 10 12 | eqtr3i | ⊢ ( abs  ∘   −  )  =  ( ( dist ‘ ℂfld )  ↾  ( ℂ  ×  ℂ ) ) | 
						
							| 14 | 4 13 | iscms | ⊢ ( ℂfld  ∈  CMetSp  ↔  ( ℂfld  ∈  MetSp  ∧  ( abs  ∘   −  )  ∈  ( CMet ‘ ℂ ) ) ) | 
						
							| 15 | 1 3 14 | mpbir2an | ⊢ ℂfld  ∈  CMetSp |