| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp3 | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺  ∈  ( 𝐵 –cn→ ℂ ) )  →  𝐺  ∈  ( 𝐵 –cn→ ℂ ) ) | 
						
							| 2 |  | cncff | ⊢ ( 𝐺  ∈  ( 𝐵 –cn→ ℂ )  →  𝐺 : 𝐵 ⟶ ℂ ) | 
						
							| 3 | 1 2 | syl | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺  ∈  ( 𝐵 –cn→ ℂ ) )  →  𝐺 : 𝐵 ⟶ ℂ ) | 
						
							| 4 |  | simp2 | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺  ∈  ( 𝐵 –cn→ ℂ ) )  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 5 |  | fco | ⊢ ( ( 𝐺 : 𝐵 ⟶ ℂ  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 𝐺  ∘  𝐹 ) : 𝐴 ⟶ ℂ ) | 
						
							| 6 | 3 4 5 | syl2anc | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺  ∈  ( 𝐵 –cn→ ℂ ) )  →  ( 𝐺  ∘  𝐹 ) : 𝐴 ⟶ ℂ ) | 
						
							| 7 | 4 | fdmd | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺  ∈  ( 𝐵 –cn→ ℂ ) )  →  dom  𝐹  =  𝐴 ) | 
						
							| 8 |  | mbfdm | ⊢ ( 𝐹  ∈  MblFn  →  dom  𝐹  ∈  dom  vol ) | 
						
							| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺  ∈  ( 𝐵 –cn→ ℂ ) )  →  dom  𝐹  ∈  dom  vol ) | 
						
							| 10 | 7 9 | eqeltrrd | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺  ∈  ( 𝐵 –cn→ ℂ ) )  →  𝐴  ∈  dom  vol ) | 
						
							| 11 |  | mblss | ⊢ ( 𝐴  ∈  dom  vol  →  𝐴  ⊆  ℝ ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺  ∈  ( 𝐵 –cn→ ℂ ) )  →  𝐴  ⊆  ℝ ) | 
						
							| 13 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 14 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 15 |  | elpm2r | ⊢ ( ( ( ℂ  ∈  V  ∧  ℝ  ∈  V )  ∧  ( ( 𝐺  ∘  𝐹 ) : 𝐴 ⟶ ℂ  ∧  𝐴  ⊆  ℝ ) )  →  ( 𝐺  ∘  𝐹 )  ∈  ( ℂ  ↑pm  ℝ ) ) | 
						
							| 16 | 13 14 15 | mpanl12 | ⊢ ( ( ( 𝐺  ∘  𝐹 ) : 𝐴 ⟶ ℂ  ∧  𝐴  ⊆  ℝ )  →  ( 𝐺  ∘  𝐹 )  ∈  ( ℂ  ↑pm  ℝ ) ) | 
						
							| 17 | 6 12 16 | syl2anc | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺  ∈  ( 𝐵 –cn→ ℂ ) )  →  ( 𝐺  ∘  𝐹 )  ∈  ( ℂ  ↑pm  ℝ ) ) | 
						
							| 18 |  | coeq1 | ⊢ ( 𝑔  =  ( ℜ  ∘  𝐺 )  →  ( 𝑔  ∘  𝐹 )  =  ( ( ℜ  ∘  𝐺 )  ∘  𝐹 ) ) | 
						
							| 19 |  | coass | ⊢ ( ( ℜ  ∘  𝐺 )  ∘  𝐹 )  =  ( ℜ  ∘  ( 𝐺  ∘  𝐹 ) ) | 
						
							| 20 | 18 19 | eqtrdi | ⊢ ( 𝑔  =  ( ℜ  ∘  𝐺 )  →  ( 𝑔  ∘  𝐹 )  =  ( ℜ  ∘  ( 𝐺  ∘  𝐹 ) ) ) | 
						
							| 21 | 20 | cnveqd | ⊢ ( 𝑔  =  ( ℜ  ∘  𝐺 )  →  ◡ ( 𝑔  ∘  𝐹 )  =  ◡ ( ℜ  ∘  ( 𝐺  ∘  𝐹 ) ) ) | 
						
							| 22 | 21 | imaeq1d | ⊢ ( 𝑔  =  ( ℜ  ∘  𝐺 )  →  ( ◡ ( 𝑔  ∘  𝐹 )  “  𝑥 )  =  ( ◡ ( ℜ  ∘  ( 𝐺  ∘  𝐹 ) )  “  𝑥 ) ) | 
						
							| 23 | 22 | eleq1d | ⊢ ( 𝑔  =  ( ℜ  ∘  𝐺 )  →  ( ( ◡ ( 𝑔  ∘  𝐹 )  “  𝑥 )  ∈  dom  vol  ↔  ( ◡ ( ℜ  ∘  ( 𝐺  ∘  𝐹 ) )  “  𝑥 )  ∈  dom  vol ) ) | 
						
							| 24 |  | cnvco | ⊢ ◡ ( 𝑔  ∘  𝐹 )  =  ( ◡ 𝐹  ∘  ◡ 𝑔 ) | 
						
							| 25 | 24 | imaeq1i | ⊢ ( ◡ ( 𝑔  ∘  𝐹 )  “  𝑥 )  =  ( ( ◡ 𝐹  ∘  ◡ 𝑔 )  “  𝑥 ) | 
						
							| 26 |  | imaco | ⊢ ( ( ◡ 𝐹  ∘  ◡ 𝑔 )  “  𝑥 )  =  ( ◡ 𝐹  “  ( ◡ 𝑔  “  𝑥 ) ) | 
						
							| 27 | 25 26 | eqtri | ⊢ ( ◡ ( 𝑔  ∘  𝐹 )  “  𝑥 )  =  ( ◡ 𝐹  “  ( ◡ 𝑔  “  𝑥 ) ) | 
						
							| 28 |  | simplll | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  ∧  𝑥  ∈  ran  (,) )  ∧  𝑔  ∈  ( 𝐵 –cn→ ℝ ) )  →  𝐹  ∈  MblFn ) | 
						
							| 29 |  | simpllr | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  ∧  𝑥  ∈  ran  (,) )  ∧  𝑔  ∈  ( 𝐵 –cn→ ℝ ) )  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 30 |  | cncfrss | ⊢ ( 𝑔  ∈  ( 𝐵 –cn→ ℝ )  →  𝐵  ⊆  ℂ ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  ∧  𝑥  ∈  ran  (,) )  ∧  𝑔  ∈  ( 𝐵 –cn→ ℝ ) )  →  𝐵  ⊆  ℂ ) | 
						
							| 32 |  | simpr | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  ∧  𝑥  ∈  ran  (,) )  ∧  𝑔  ∈  ( 𝐵 –cn→ ℝ ) )  →  𝑔  ∈  ( 𝐵 –cn→ ℝ ) ) | 
						
							| 33 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 34 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 35 |  | eqid | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  𝐵 )  =  ( ( TopOpen ‘ ℂfld )  ↾t  𝐵 ) | 
						
							| 36 |  | tgioo4 | ⊢ ( topGen ‘ ran  (,) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 37 | 34 35 36 | cncfcn | ⊢ ( ( 𝐵  ⊆  ℂ  ∧  ℝ  ⊆  ℂ )  →  ( 𝐵 –cn→ ℝ )  =  ( ( ( TopOpen ‘ ℂfld )  ↾t  𝐵 )  Cn  ( topGen ‘ ran  (,) ) ) ) | 
						
							| 38 | 31 33 37 | sylancl | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  ∧  𝑥  ∈  ran  (,) )  ∧  𝑔  ∈  ( 𝐵 –cn→ ℝ ) )  →  ( 𝐵 –cn→ ℝ )  =  ( ( ( TopOpen ‘ ℂfld )  ↾t  𝐵 )  Cn  ( topGen ‘ ran  (,) ) ) ) | 
						
							| 39 | 32 38 | eleqtrd | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  ∧  𝑥  ∈  ran  (,) )  ∧  𝑔  ∈  ( 𝐵 –cn→ ℝ ) )  →  𝑔  ∈  ( ( ( TopOpen ‘ ℂfld )  ↾t  𝐵 )  Cn  ( topGen ‘ ran  (,) ) ) ) | 
						
							| 40 |  | retopbas | ⊢ ran  (,)  ∈  TopBases | 
						
							| 41 |  | bastg | ⊢ ( ran  (,)  ∈  TopBases  →  ran  (,)  ⊆  ( topGen ‘ ran  (,) ) ) | 
						
							| 42 | 40 41 | ax-mp | ⊢ ran  (,)  ⊆  ( topGen ‘ ran  (,) ) | 
						
							| 43 |  | simplr | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  ∧  𝑥  ∈  ran  (,) )  ∧  𝑔  ∈  ( 𝐵 –cn→ ℝ ) )  →  𝑥  ∈  ran  (,) ) | 
						
							| 44 | 42 43 | sselid | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  ∧  𝑥  ∈  ran  (,) )  ∧  𝑔  ∈  ( 𝐵 –cn→ ℝ ) )  →  𝑥  ∈  ( topGen ‘ ran  (,) ) ) | 
						
							| 45 |  | cnima | ⊢ ( ( 𝑔  ∈  ( ( ( TopOpen ‘ ℂfld )  ↾t  𝐵 )  Cn  ( topGen ‘ ran  (,) ) )  ∧  𝑥  ∈  ( topGen ‘ ran  (,) ) )  →  ( ◡ 𝑔  “  𝑥 )  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  𝐵 ) ) | 
						
							| 46 | 39 44 45 | syl2anc | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  ∧  𝑥  ∈  ran  (,) )  ∧  𝑔  ∈  ( 𝐵 –cn→ ℝ ) )  →  ( ◡ 𝑔  “  𝑥 )  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  𝐵 ) ) | 
						
							| 47 | 34 35 | mbfimaopn2 | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐵  ⊆  ℂ )  ∧  ( ◡ 𝑔  “  𝑥 )  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  𝐵 ) )  →  ( ◡ 𝐹  “  ( ◡ 𝑔  “  𝑥 ) )  ∈  dom  vol ) | 
						
							| 48 | 28 29 31 46 47 | syl31anc | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  ∧  𝑥  ∈  ran  (,) )  ∧  𝑔  ∈  ( 𝐵 –cn→ ℝ ) )  →  ( ◡ 𝐹  “  ( ◡ 𝑔  “  𝑥 ) )  ∈  dom  vol ) | 
						
							| 49 | 27 48 | eqeltrid | ⊢ ( ( ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  ∧  𝑥  ∈  ran  (,) )  ∧  𝑔  ∈  ( 𝐵 –cn→ ℝ ) )  →  ( ◡ ( 𝑔  ∘  𝐹 )  “  𝑥 )  ∈  dom  vol ) | 
						
							| 50 | 49 | ralrimiva | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  ∧  𝑥  ∈  ran  (,) )  →  ∀ 𝑔  ∈  ( 𝐵 –cn→ ℝ ) ( ◡ ( 𝑔  ∘  𝐹 )  “  𝑥 )  ∈  dom  vol ) | 
						
							| 51 | 50 | 3adantl3 | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺  ∈  ( 𝐵 –cn→ ℂ ) )  ∧  𝑥  ∈  ran  (,) )  →  ∀ 𝑔  ∈  ( 𝐵 –cn→ ℝ ) ( ◡ ( 𝑔  ∘  𝐹 )  “  𝑥 )  ∈  dom  vol ) | 
						
							| 52 |  | recncf | ⊢ ℜ  ∈  ( ℂ –cn→ ℝ ) | 
						
							| 53 | 52 | a1i | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺  ∈  ( 𝐵 –cn→ ℂ ) )  →  ℜ  ∈  ( ℂ –cn→ ℝ ) ) | 
						
							| 54 | 1 53 | cncfco | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺  ∈  ( 𝐵 –cn→ ℂ ) )  →  ( ℜ  ∘  𝐺 )  ∈  ( 𝐵 –cn→ ℝ ) ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺  ∈  ( 𝐵 –cn→ ℂ ) )  ∧  𝑥  ∈  ran  (,) )  →  ( ℜ  ∘  𝐺 )  ∈  ( 𝐵 –cn→ ℝ ) ) | 
						
							| 56 | 23 51 55 | rspcdva | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺  ∈  ( 𝐵 –cn→ ℂ ) )  ∧  𝑥  ∈  ran  (,) )  →  ( ◡ ( ℜ  ∘  ( 𝐺  ∘  𝐹 ) )  “  𝑥 )  ∈  dom  vol ) | 
						
							| 57 |  | coeq1 | ⊢ ( 𝑔  =  ( ℑ  ∘  𝐺 )  →  ( 𝑔  ∘  𝐹 )  =  ( ( ℑ  ∘  𝐺 )  ∘  𝐹 ) ) | 
						
							| 58 |  | coass | ⊢ ( ( ℑ  ∘  𝐺 )  ∘  𝐹 )  =  ( ℑ  ∘  ( 𝐺  ∘  𝐹 ) ) | 
						
							| 59 | 57 58 | eqtrdi | ⊢ ( 𝑔  =  ( ℑ  ∘  𝐺 )  →  ( 𝑔  ∘  𝐹 )  =  ( ℑ  ∘  ( 𝐺  ∘  𝐹 ) ) ) | 
						
							| 60 | 59 | cnveqd | ⊢ ( 𝑔  =  ( ℑ  ∘  𝐺 )  →  ◡ ( 𝑔  ∘  𝐹 )  =  ◡ ( ℑ  ∘  ( 𝐺  ∘  𝐹 ) ) ) | 
						
							| 61 | 60 | imaeq1d | ⊢ ( 𝑔  =  ( ℑ  ∘  𝐺 )  →  ( ◡ ( 𝑔  ∘  𝐹 )  “  𝑥 )  =  ( ◡ ( ℑ  ∘  ( 𝐺  ∘  𝐹 ) )  “  𝑥 ) ) | 
						
							| 62 | 61 | eleq1d | ⊢ ( 𝑔  =  ( ℑ  ∘  𝐺 )  →  ( ( ◡ ( 𝑔  ∘  𝐹 )  “  𝑥 )  ∈  dom  vol  ↔  ( ◡ ( ℑ  ∘  ( 𝐺  ∘  𝐹 ) )  “  𝑥 )  ∈  dom  vol ) ) | 
						
							| 63 |  | imcncf | ⊢ ℑ  ∈  ( ℂ –cn→ ℝ ) | 
						
							| 64 | 63 | a1i | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺  ∈  ( 𝐵 –cn→ ℂ ) )  →  ℑ  ∈  ( ℂ –cn→ ℝ ) ) | 
						
							| 65 | 1 64 | cncfco | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺  ∈  ( 𝐵 –cn→ ℂ ) )  →  ( ℑ  ∘  𝐺 )  ∈  ( 𝐵 –cn→ ℝ ) ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺  ∈  ( 𝐵 –cn→ ℂ ) )  ∧  𝑥  ∈  ran  (,) )  →  ( ℑ  ∘  𝐺 )  ∈  ( 𝐵 –cn→ ℝ ) ) | 
						
							| 67 | 62 51 66 | rspcdva | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺  ∈  ( 𝐵 –cn→ ℂ ) )  ∧  𝑥  ∈  ran  (,) )  →  ( ◡ ( ℑ  ∘  ( 𝐺  ∘  𝐹 ) )  “  𝑥 )  ∈  dom  vol ) | 
						
							| 68 | 56 67 | jca | ⊢ ( ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺  ∈  ( 𝐵 –cn→ ℂ ) )  ∧  𝑥  ∈  ran  (,) )  →  ( ( ◡ ( ℜ  ∘  ( 𝐺  ∘  𝐹 ) )  “  𝑥 )  ∈  dom  vol  ∧  ( ◡ ( ℑ  ∘  ( 𝐺  ∘  𝐹 ) )  “  𝑥 )  ∈  dom  vol ) ) | 
						
							| 69 | 68 | ralrimiva | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺  ∈  ( 𝐵 –cn→ ℂ ) )  →  ∀ 𝑥  ∈  ran  (,) ( ( ◡ ( ℜ  ∘  ( 𝐺  ∘  𝐹 ) )  “  𝑥 )  ∈  dom  vol  ∧  ( ◡ ( ℑ  ∘  ( 𝐺  ∘  𝐹 ) )  “  𝑥 )  ∈  dom  vol ) ) | 
						
							| 70 |  | ismbf1 | ⊢ ( ( 𝐺  ∘  𝐹 )  ∈  MblFn  ↔  ( ( 𝐺  ∘  𝐹 )  ∈  ( ℂ  ↑pm  ℝ )  ∧  ∀ 𝑥  ∈  ran  (,) ( ( ◡ ( ℜ  ∘  ( 𝐺  ∘  𝐹 ) )  “  𝑥 )  ∈  dom  vol  ∧  ( ◡ ( ℑ  ∘  ( 𝐺  ∘  𝐹 ) )  “  𝑥 )  ∈  dom  vol ) ) ) | 
						
							| 71 | 17 69 70 | sylanbrc | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐺  ∈  ( 𝐵 –cn→ ℂ ) )  →  ( 𝐺  ∘  𝐹 )  ∈  MblFn ) |