Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐶 gcd 𝑁 ) = 1 ) → 𝑁 ∈ ℕ ) |
2 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
3 |
2
|
div1d |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 / 1 ) = 𝑁 ) |
4 |
|
oveq2 |
⊢ ( ( 𝐶 gcd 𝑁 ) = 1 → ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = ( 𝑁 / 1 ) ) |
5 |
4
|
eqcomd |
⊢ ( ( 𝐶 gcd 𝑁 ) = 1 → ( 𝑁 / 1 ) = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) |
6 |
3 5
|
sylan9req |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐶 gcd 𝑁 ) = 1 ) → 𝑁 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) |
7 |
1 6
|
jca |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐶 gcd 𝑁 ) = 1 ) → ( 𝑁 ∈ ℕ ∧ 𝑁 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) |
8 |
|
cncongr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑁 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( ( ( 𝐴 · 𝐶 ) mod 𝑁 ) = ( ( 𝐵 · 𝐶 ) mod 𝑁 ) ↔ ( 𝐴 mod 𝑁 ) = ( 𝐵 mod 𝑁 ) ) ) |
9 |
7 8
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ ( 𝐶 gcd 𝑁 ) = 1 ) ) → ( ( ( 𝐴 · 𝐶 ) mod 𝑁 ) = ( ( 𝐵 · 𝐶 ) mod 𝑁 ) ↔ ( 𝐴 mod 𝑁 ) = ( 𝐵 mod 𝑁 ) ) ) |