Step |
Hyp |
Ref |
Expression |
1 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
2 |
1
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 ∥ 𝐶 ) ) → 𝑃 ∈ ℕ ) |
3 |
|
coprm |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐶 ∈ ℤ ) → ( ¬ 𝑃 ∥ 𝐶 ↔ ( 𝑃 gcd 𝐶 ) = 1 ) ) |
4 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
5 |
|
gcdcom |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝑃 gcd 𝐶 ) = ( 𝐶 gcd 𝑃 ) ) |
6 |
4 5
|
sylan |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐶 ∈ ℤ ) → ( 𝑃 gcd 𝐶 ) = ( 𝐶 gcd 𝑃 ) ) |
7 |
6
|
eqeq1d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐶 ∈ ℤ ) → ( ( 𝑃 gcd 𝐶 ) = 1 ↔ ( 𝐶 gcd 𝑃 ) = 1 ) ) |
8 |
3 7
|
bitrd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐶 ∈ ℤ ) → ( ¬ 𝑃 ∥ 𝐶 ↔ ( 𝐶 gcd 𝑃 ) = 1 ) ) |
9 |
8
|
ancoms |
⊢ ( ( 𝐶 ∈ ℤ ∧ 𝑃 ∈ ℙ ) → ( ¬ 𝑃 ∥ 𝐶 ↔ ( 𝐶 gcd 𝑃 ) = 1 ) ) |
10 |
9
|
biimpd |
⊢ ( ( 𝐶 ∈ ℤ ∧ 𝑃 ∈ ℙ ) → ( ¬ 𝑃 ∥ 𝐶 → ( 𝐶 gcd 𝑃 ) = 1 ) ) |
11 |
10
|
expimpd |
⊢ ( 𝐶 ∈ ℤ → ( ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 ∥ 𝐶 ) → ( 𝐶 gcd 𝑃 ) = 1 ) ) |
12 |
11
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 ∥ 𝐶 ) → ( 𝐶 gcd 𝑃 ) = 1 ) ) |
13 |
12
|
imp |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 ∥ 𝐶 ) ) → ( 𝐶 gcd 𝑃 ) = 1 ) |
14 |
2 13
|
jca |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 ∥ 𝐶 ) ) → ( 𝑃 ∈ ℕ ∧ ( 𝐶 gcd 𝑃 ) = 1 ) ) |
15 |
|
cncongrcoprm |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑃 ∈ ℕ ∧ ( 𝐶 gcd 𝑃 ) = 1 ) ) → ( ( ( 𝐴 · 𝐶 ) mod 𝑃 ) = ( ( 𝐵 · 𝐶 ) mod 𝑃 ) ↔ ( 𝐴 mod 𝑃 ) = ( 𝐵 mod 𝑃 ) ) ) |
16 |
14 15
|
syldan |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 ∥ 𝐶 ) ) → ( ( ( 𝐴 · 𝐶 ) mod 𝑃 ) = ( ( 𝐵 · 𝐶 ) mod 𝑃 ) ↔ ( 𝐴 mod 𝑃 ) = ( 𝐵 mod 𝑃 ) ) ) |