Step |
Hyp |
Ref |
Expression |
1 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
2 |
1
|
a1i |
⊢ ( ⊤ → ℂ = ( Base ‘ ℂfld ) ) |
3 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
4 |
3
|
a1i |
⊢ ( ⊤ → + = ( +g ‘ ℂfld ) ) |
5 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
6 |
5
|
a1i |
⊢ ( ⊤ → · = ( .r ‘ ℂfld ) ) |
7 |
|
addcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) |
8 |
|
addass |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
9 |
|
0cn |
⊢ 0 ∈ ℂ |
10 |
|
addid2 |
⊢ ( 𝑥 ∈ ℂ → ( 0 + 𝑥 ) = 𝑥 ) |
11 |
|
negcl |
⊢ ( 𝑥 ∈ ℂ → - 𝑥 ∈ ℂ ) |
12 |
|
addcom |
⊢ ( ( - 𝑥 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( - 𝑥 + 𝑥 ) = ( 𝑥 + - 𝑥 ) ) |
13 |
11 12
|
mpancom |
⊢ ( 𝑥 ∈ ℂ → ( - 𝑥 + 𝑥 ) = ( 𝑥 + - 𝑥 ) ) |
14 |
|
negid |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 + - 𝑥 ) = 0 ) |
15 |
13 14
|
eqtrd |
⊢ ( 𝑥 ∈ ℂ → ( - 𝑥 + 𝑥 ) = 0 ) |
16 |
1 3 7 8 9 10 11 15
|
isgrpi |
⊢ ℂfld ∈ Grp |
17 |
16
|
a1i |
⊢ ( ⊤ → ℂfld ∈ Grp ) |
18 |
|
mulcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
19 |
18
|
3adant1 |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
20 |
|
mulass |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) |
21 |
20
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) |
22 |
|
adddi |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) |
23 |
22
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) |
24 |
|
adddir |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
25 |
24
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
26 |
|
1cnd |
⊢ ( ⊤ → 1 ∈ ℂ ) |
27 |
|
mulid2 |
⊢ ( 𝑥 ∈ ℂ → ( 1 · 𝑥 ) = 𝑥 ) |
28 |
27
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → ( 1 · 𝑥 ) = 𝑥 ) |
29 |
|
mulid1 |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 · 1 ) = 𝑥 ) |
30 |
29
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → ( 𝑥 · 1 ) = 𝑥 ) |
31 |
|
mulcom |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) |
32 |
31
|
3adant1 |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) |
33 |
2 4 6 17 19 21 23 25 26 28 30 32
|
iscrngd |
⊢ ( ⊤ → ℂfld ∈ CRing ) |
34 |
33
|
mptru |
⊢ ℂfld ∈ CRing |