Metamath Proof Explorer


Theorem cncrng

Description: The complex numbers form a commutative ring. (Contributed by Mario Carneiro, 8-Jan-2015)

Ref Expression
Assertion cncrng fld ∈ CRing

Proof

Step Hyp Ref Expression
1 cnfldbas ℂ = ( Base ‘ ℂfld )
2 1 a1i ( ⊤ → ℂ = ( Base ‘ ℂfld ) )
3 cnfldadd + = ( +g ‘ ℂfld )
4 3 a1i ( ⊤ → + = ( +g ‘ ℂfld ) )
5 cnfldmul · = ( .r ‘ ℂfld )
6 5 a1i ( ⊤ → · = ( .r ‘ ℂfld ) )
7 addcl ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ )
8 addass ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) )
9 0cn 0 ∈ ℂ
10 addid2 ( 𝑥 ∈ ℂ → ( 0 + 𝑥 ) = 𝑥 )
11 negcl ( 𝑥 ∈ ℂ → - 𝑥 ∈ ℂ )
12 addcom ( ( - 𝑥 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( - 𝑥 + 𝑥 ) = ( 𝑥 + - 𝑥 ) )
13 11 12 mpancom ( 𝑥 ∈ ℂ → ( - 𝑥 + 𝑥 ) = ( 𝑥 + - 𝑥 ) )
14 negid ( 𝑥 ∈ ℂ → ( 𝑥 + - 𝑥 ) = 0 )
15 13 14 eqtrd ( 𝑥 ∈ ℂ → ( - 𝑥 + 𝑥 ) = 0 )
16 1 3 7 8 9 10 11 15 isgrpi fld ∈ Grp
17 16 a1i ( ⊤ → ℂfld ∈ Grp )
18 mulcl ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ )
19 18 3adant1 ( ( ⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ )
20 mulass ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) )
21 20 adantl ( ( ⊤ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) )
22 adddi ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) )
23 22 adantl ( ( ⊤ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) )
24 adddir ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) )
25 24 adantl ( ( ⊤ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) )
26 1cnd ( ⊤ → 1 ∈ ℂ )
27 mulid2 ( 𝑥 ∈ ℂ → ( 1 · 𝑥 ) = 𝑥 )
28 27 adantl ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → ( 1 · 𝑥 ) = 𝑥 )
29 mulid1 ( 𝑥 ∈ ℂ → ( 𝑥 · 1 ) = 𝑥 )
30 29 adantl ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → ( 𝑥 · 1 ) = 𝑥 )
31 mulcom ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) )
32 31 3adant1 ( ( ⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) )
33 2 4 6 17 19 21 23 25 26 28 30 32 iscrngd ( ⊤ → ℂfld ∈ CRing )
34 33 mptru fld ∈ CRing