Metamath Proof Explorer


Theorem cncvcOLD

Description: Obsolete version of cncvs . The set of complex numbers is a complex vector space. The vector operation is + , and the scalar product is x. . (Contributed by NM, 5-Nov-2006) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion cncvcOLD ⟨ + , · ⟩ ∈ CVecOLD

Proof

Step Hyp Ref Expression
1 cnaddabloOLD + ∈ AbelOp
2 ax-addf + : ( ℂ × ℂ ) ⟶ ℂ
3 2 fdmi dom + = ( ℂ × ℂ )
4 ax-mulf · : ( ℂ × ℂ ) ⟶ ℂ
5 mulid2 ( 𝑥 ∈ ℂ → ( 1 · 𝑥 ) = 𝑥 )
6 adddi ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) )
7 adddir ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑦 + 𝑧 ) · 𝑥 ) = ( ( 𝑦 · 𝑥 ) + ( 𝑧 · 𝑥 ) ) )
8 mulass ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑦 · 𝑧 ) · 𝑥 ) = ( 𝑦 · ( 𝑧 · 𝑥 ) ) )
9 eqid ⟨ + , · ⟩ = ⟨ + , · ⟩
10 1 3 4 5 6 7 8 9 isvciOLD ⟨ + , · ⟩ ∈ CVecOLD