Step |
Hyp |
Ref |
Expression |
1 |
|
cnrlmod.c |
⊢ 𝐶 = ( ringLMod ‘ ℂfld ) |
2 |
1
|
cnrlmod |
⊢ 𝐶 ∈ LMod |
3 |
|
cnfldex |
⊢ ℂfld ∈ V |
4 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
5 |
4
|
ressid |
⊢ ( ℂfld ∈ V → ( ℂfld ↾s ℂ ) = ℂfld ) |
6 |
3 5
|
ax-mp |
⊢ ( ℂfld ↾s ℂ ) = ℂfld |
7 |
6
|
eqcomi |
⊢ ℂfld = ( ℂfld ↾s ℂ ) |
8 |
|
id |
⊢ ( 𝑥 ∈ ℂ → 𝑥 ∈ ℂ ) |
9 |
|
addcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) |
10 |
|
negcl |
⊢ ( 𝑥 ∈ ℂ → - 𝑥 ∈ ℂ ) |
11 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
12 |
|
mulcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
13 |
8 9 10 11 12
|
cnsubrglem |
⊢ ℂ ∈ ( SubRing ‘ ℂfld ) |
14 |
|
rlmsca |
⊢ ( ℂfld ∈ V → ℂfld = ( Scalar ‘ ( ringLMod ‘ ℂfld ) ) ) |
15 |
3 14
|
ax-mp |
⊢ ℂfld = ( Scalar ‘ ( ringLMod ‘ ℂfld ) ) |
16 |
1
|
eqcomi |
⊢ ( ringLMod ‘ ℂfld ) = 𝐶 |
17 |
16
|
fveq2i |
⊢ ( Scalar ‘ ( ringLMod ‘ ℂfld ) ) = ( Scalar ‘ 𝐶 ) |
18 |
15 17
|
eqtri |
⊢ ℂfld = ( Scalar ‘ 𝐶 ) |
19 |
18
|
isclmi |
⊢ ( ( 𝐶 ∈ LMod ∧ ℂfld = ( ℂfld ↾s ℂ ) ∧ ℂ ∈ ( SubRing ‘ ℂfld ) ) → 𝐶 ∈ ℂMod ) |
20 |
2 7 13 19
|
mp3an |
⊢ 𝐶 ∈ ℂMod |
21 |
1
|
cnrlvec |
⊢ 𝐶 ∈ LVec |
22 |
20 21
|
elini |
⊢ 𝐶 ∈ ( ℂMod ∩ LVec ) |
23 |
|
df-cvs |
⊢ ℂVec = ( ℂMod ∩ LVec ) |
24 |
22 23
|
eleqtrri |
⊢ 𝐶 ∈ ℂVec |