Metamath Proof Explorer


Theorem cncvs

Description: The complex left module of complex numbers is a subcomplex vector space. The vector operation is + , and the scalar product is x. . (Contributed by NM, 5-Nov-2006) (Revised by AV, 21-Sep-2021)

Ref Expression
Hypothesis cnrlmod.c 𝐶 = ( ringLMod ‘ ℂfld )
Assertion cncvs 𝐶 ∈ ℂVec

Proof

Step Hyp Ref Expression
1 cnrlmod.c 𝐶 = ( ringLMod ‘ ℂfld )
2 1 cnrlmod 𝐶 ∈ LMod
3 cnfldex fld ∈ V
4 cnfldbas ℂ = ( Base ‘ ℂfld )
5 4 ressid ( ℂfld ∈ V → ( ℂflds ℂ ) = ℂfld )
6 3 5 ax-mp ( ℂflds ℂ ) = ℂfld
7 6 eqcomi fld = ( ℂflds ℂ )
8 id ( 𝑥 ∈ ℂ → 𝑥 ∈ ℂ )
9 addcl ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ )
10 negcl ( 𝑥 ∈ ℂ → - 𝑥 ∈ ℂ )
11 ax-1cn 1 ∈ ℂ
12 mulcl ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ )
13 8 9 10 11 12 cnsubrglem ℂ ∈ ( SubRing ‘ ℂfld )
14 rlmsca ( ℂfld ∈ V → ℂfld = ( Scalar ‘ ( ringLMod ‘ ℂfld ) ) )
15 3 14 ax-mp fld = ( Scalar ‘ ( ringLMod ‘ ℂfld ) )
16 1 eqcomi ( ringLMod ‘ ℂfld ) = 𝐶
17 16 fveq2i ( Scalar ‘ ( ringLMod ‘ ℂfld ) ) = ( Scalar ‘ 𝐶 )
18 15 17 eqtri fld = ( Scalar ‘ 𝐶 )
19 18 isclmi ( ( 𝐶 ∈ LMod ∧ ℂfld = ( ℂflds ℂ ) ∧ ℂ ∈ ( SubRing ‘ ℂfld ) ) → 𝐶 ∈ ℂMod )
20 2 7 13 19 mp3an 𝐶 ∈ ℂMod
21 1 cnrlvec 𝐶 ∈ LVec
22 20 21 elini 𝐶 ∈ ( ℂMod ∩ LVec )
23 df-cvs ℂVec = ( ℂMod ∩ LVec )
24 22 23 eleqtrri 𝐶 ∈ ℂVec