| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnrlmod.c | ⊢ 𝐶  =  ( ringLMod ‘ ℂfld ) | 
						
							| 2 | 1 | cnrlmod | ⊢ 𝐶  ∈  LMod | 
						
							| 3 |  | cnfldex | ⊢ ℂfld  ∈  V | 
						
							| 4 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 5 | 4 | ressid | ⊢ ( ℂfld  ∈  V  →  ( ℂfld  ↾s  ℂ )  =  ℂfld ) | 
						
							| 6 | 3 5 | ax-mp | ⊢ ( ℂfld  ↾s  ℂ )  =  ℂfld | 
						
							| 7 | 6 | eqcomi | ⊢ ℂfld  =  ( ℂfld  ↾s  ℂ ) | 
						
							| 8 |  | id | ⊢ ( 𝑥  ∈  ℂ  →  𝑥  ∈  ℂ ) | 
						
							| 9 |  | addcl | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 𝑥  +  𝑦 )  ∈  ℂ ) | 
						
							| 10 |  | negcl | ⊢ ( 𝑥  ∈  ℂ  →  - 𝑥  ∈  ℂ ) | 
						
							| 11 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 12 |  | mulcl | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 𝑥  ·  𝑦 )  ∈  ℂ ) | 
						
							| 13 | 8 9 10 11 12 | cnsubrglem | ⊢ ℂ  ∈  ( SubRing ‘ ℂfld ) | 
						
							| 14 |  | rlmsca | ⊢ ( ℂfld  ∈  V  →  ℂfld  =  ( Scalar ‘ ( ringLMod ‘ ℂfld ) ) ) | 
						
							| 15 | 3 14 | ax-mp | ⊢ ℂfld  =  ( Scalar ‘ ( ringLMod ‘ ℂfld ) ) | 
						
							| 16 | 1 | eqcomi | ⊢ ( ringLMod ‘ ℂfld )  =  𝐶 | 
						
							| 17 | 16 | fveq2i | ⊢ ( Scalar ‘ ( ringLMod ‘ ℂfld ) )  =  ( Scalar ‘ 𝐶 ) | 
						
							| 18 | 15 17 | eqtri | ⊢ ℂfld  =  ( Scalar ‘ 𝐶 ) | 
						
							| 19 | 18 | isclmi | ⊢ ( ( 𝐶  ∈  LMod  ∧  ℂfld  =  ( ℂfld  ↾s  ℂ )  ∧  ℂ  ∈  ( SubRing ‘ ℂfld ) )  →  𝐶  ∈  ℂMod ) | 
						
							| 20 | 2 7 13 19 | mp3an | ⊢ 𝐶  ∈  ℂMod | 
						
							| 21 | 1 | cnrlvec | ⊢ 𝐶  ∈  LVec | 
						
							| 22 | 20 21 | elini | ⊢ 𝐶  ∈  ( ℂMod  ∩  LVec ) | 
						
							| 23 |  | df-cvs | ⊢ ℂVec  =  ( ℂMod  ∩  LVec ) | 
						
							| 24 | 22 23 | eleqtrri | ⊢ 𝐶  ∈  ℂVec |