Step |
Hyp |
Ref |
Expression |
1 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
2 |
1
|
a1i |
⊢ ( ⊤ → ℂ = ( Base ‘ ℂfld ) ) |
3 |
|
mpocnfldmul |
⊢ ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) = ( .r ‘ ℂfld ) |
4 |
3
|
a1i |
⊢ ( ⊤ → ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) = ( .r ‘ ℂfld ) ) |
5 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
6 |
5
|
a1i |
⊢ ( ⊤ → 0 = ( 0g ‘ ℂfld ) ) |
7 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
8 |
7
|
a1i |
⊢ ( ⊤ → 1 = ( 1r ‘ ℂfld ) ) |
9 |
|
cnring |
⊢ ℂfld ∈ Ring |
10 |
9
|
a1i |
⊢ ( ⊤ → ℂfld ∈ Ring ) |
11 |
|
ovmpot |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) = ( 𝑥 · 𝑦 ) ) |
12 |
11
|
ad2ant2r |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) = ( 𝑥 · 𝑦 ) ) |
13 |
|
mulne0 |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 · 𝑦 ) ≠ 0 ) |
14 |
12 13
|
eqnetrd |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ≠ 0 ) |
15 |
14
|
3adant1 |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ≠ 0 ) |
16 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
17 |
16
|
a1i |
⊢ ( ⊤ → 1 ≠ 0 ) |
18 |
|
reccl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → ( 1 / 𝑥 ) ∈ ℂ ) |
19 |
18
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) → ( 1 / 𝑥 ) ∈ ℂ ) |
20 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → 𝑥 ∈ ℂ ) |
21 |
|
ovmpot |
⊢ ( ( ( 1 / 𝑥 ) ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ( 1 / 𝑥 ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) = ( ( 1 / 𝑥 ) · 𝑥 ) ) |
22 |
18 20 21
|
syl2anc |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → ( ( 1 / 𝑥 ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) = ( ( 1 / 𝑥 ) · 𝑥 ) ) |
23 |
|
recid2 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → ( ( 1 / 𝑥 ) · 𝑥 ) = 1 ) |
24 |
22 23
|
eqtrd |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → ( ( 1 / 𝑥 ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) = 1 ) |
25 |
24
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) → ( ( 1 / 𝑥 ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) = 1 ) |
26 |
2 4 6 8 10 15 17 19 25
|
isdrngd |
⊢ ( ⊤ → ℂfld ∈ DivRing ) |
27 |
26
|
mptru |
⊢ ℂfld ∈ DivRing |