| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cnfldbas | 
							⊢ ℂ  =  ( Base ‘ ℂfld )  | 
						
						
							| 2 | 
							
								1
							 | 
							a1i | 
							⊢ ( ⊤  →  ℂ  =  ( Base ‘ ℂfld ) )  | 
						
						
							| 3 | 
							
								
							 | 
							mpocnfldmul | 
							⊢ ( 𝑢  ∈  ℂ ,  𝑣  ∈  ℂ  ↦  ( 𝑢  ·  𝑣 ) )  =  ( .r ‘ ℂfld )  | 
						
						
							| 4 | 
							
								3
							 | 
							a1i | 
							⊢ ( ⊤  →  ( 𝑢  ∈  ℂ ,  𝑣  ∈  ℂ  ↦  ( 𝑢  ·  𝑣 ) )  =  ( .r ‘ ℂfld ) )  | 
						
						
							| 5 | 
							
								
							 | 
							cnfld0 | 
							⊢ 0  =  ( 0g ‘ ℂfld )  | 
						
						
							| 6 | 
							
								5
							 | 
							a1i | 
							⊢ ( ⊤  →  0  =  ( 0g ‘ ℂfld ) )  | 
						
						
							| 7 | 
							
								
							 | 
							cnfld1 | 
							⊢ 1  =  ( 1r ‘ ℂfld )  | 
						
						
							| 8 | 
							
								7
							 | 
							a1i | 
							⊢ ( ⊤  →  1  =  ( 1r ‘ ℂfld ) )  | 
						
						
							| 9 | 
							
								
							 | 
							cnring | 
							⊢ ℂfld  ∈  Ring  | 
						
						
							| 10 | 
							
								9
							 | 
							a1i | 
							⊢ ( ⊤  →  ℂfld  ∈  Ring )  | 
						
						
							| 11 | 
							
								
							 | 
							ovmpot | 
							⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 𝑥 ( 𝑢  ∈  ℂ ,  𝑣  ∈  ℂ  ↦  ( 𝑢  ·  𝑣 ) ) 𝑦 )  =  ( 𝑥  ·  𝑦 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							ad2ant2r | 
							⊢ ( ( ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 )  ∧  ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  0 ) )  →  ( 𝑥 ( 𝑢  ∈  ℂ ,  𝑣  ∈  ℂ  ↦  ( 𝑢  ·  𝑣 ) ) 𝑦 )  =  ( 𝑥  ·  𝑦 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							mulne0 | 
							⊢ ( ( ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 )  ∧  ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  0 ) )  →  ( 𝑥  ·  𝑦 )  ≠  0 )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							eqnetrd | 
							⊢ ( ( ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 )  ∧  ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  0 ) )  →  ( 𝑥 ( 𝑢  ∈  ℂ ,  𝑣  ∈  ℂ  ↦  ( 𝑢  ·  𝑣 ) ) 𝑦 )  ≠  0 )  | 
						
						
							| 15 | 
							
								14
							 | 
							3adant1 | 
							⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 )  ∧  ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  0 ) )  →  ( 𝑥 ( 𝑢  ∈  ℂ ,  𝑣  ∈  ℂ  ↦  ( 𝑢  ·  𝑣 ) ) 𝑦 )  ≠  0 )  | 
						
						
							| 16 | 
							
								
							 | 
							ax-1ne0 | 
							⊢ 1  ≠  0  | 
						
						
							| 17 | 
							
								16
							 | 
							a1i | 
							⊢ ( ⊤  →  1  ≠  0 )  | 
						
						
							| 18 | 
							
								
							 | 
							reccl | 
							⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 )  →  ( 1  /  𝑥 )  ∈  ℂ )  | 
						
						
							| 19 | 
							
								18
							 | 
							adantl | 
							⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 ) )  →  ( 1  /  𝑥 )  ∈  ℂ )  | 
						
						
							| 20 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 )  →  𝑥  ∈  ℂ )  | 
						
						
							| 21 | 
							
								
							 | 
							ovmpot | 
							⊢ ( ( ( 1  /  𝑥 )  ∈  ℂ  ∧  𝑥  ∈  ℂ )  →  ( ( 1  /  𝑥 ) ( 𝑢  ∈  ℂ ,  𝑣  ∈  ℂ  ↦  ( 𝑢  ·  𝑣 ) ) 𝑥 )  =  ( ( 1  /  𝑥 )  ·  𝑥 ) )  | 
						
						
							| 22 | 
							
								18 20 21
							 | 
							syl2anc | 
							⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 )  →  ( ( 1  /  𝑥 ) ( 𝑢  ∈  ℂ ,  𝑣  ∈  ℂ  ↦  ( 𝑢  ·  𝑣 ) ) 𝑥 )  =  ( ( 1  /  𝑥 )  ·  𝑥 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							recid2 | 
							⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 )  →  ( ( 1  /  𝑥 )  ·  𝑥 )  =  1 )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							eqtrd | 
							⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 )  →  ( ( 1  /  𝑥 ) ( 𝑢  ∈  ℂ ,  𝑣  ∈  ℂ  ↦  ( 𝑢  ·  𝑣 ) ) 𝑥 )  =  1 )  | 
						
						
							| 25 | 
							
								24
							 | 
							adantl | 
							⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 ) )  →  ( ( 1  /  𝑥 ) ( 𝑢  ∈  ℂ ,  𝑣  ∈  ℂ  ↦  ( 𝑢  ·  𝑣 ) ) 𝑥 )  =  1 )  | 
						
						
							| 26 | 
							
								2 4 6 8 10 15 17 19 25
							 | 
							isdrngd | 
							⊢ ( ⊤  →  ℂfld  ∈  DivRing )  | 
						
						
							| 27 | 
							
								26
							 | 
							mptru | 
							⊢ ℂfld  ∈  DivRing  |