| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 2 |
1
|
a1i |
⊢ ( ⊤ → ℂ = ( Base ‘ ℂfld ) ) |
| 3 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
| 4 |
3
|
a1i |
⊢ ( ⊤ → · = ( .r ‘ ℂfld ) ) |
| 5 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
| 6 |
5
|
a1i |
⊢ ( ⊤ → 0 = ( 0g ‘ ℂfld ) ) |
| 7 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
| 8 |
7
|
a1i |
⊢ ( ⊤ → 1 = ( 1r ‘ ℂfld ) ) |
| 9 |
|
cnring |
⊢ ℂfld ∈ Ring |
| 10 |
9
|
a1i |
⊢ ( ⊤ → ℂfld ∈ Ring ) |
| 11 |
|
mulne0 |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 · 𝑦 ) ≠ 0 ) |
| 12 |
11
|
3adant1 |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 · 𝑦 ) ≠ 0 ) |
| 13 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 14 |
13
|
a1i |
⊢ ( ⊤ → 1 ≠ 0 ) |
| 15 |
|
reccl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → ( 1 / 𝑥 ) ∈ ℂ ) |
| 16 |
15
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) → ( 1 / 𝑥 ) ∈ ℂ ) |
| 17 |
|
recid2 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → ( ( 1 / 𝑥 ) · 𝑥 ) = 1 ) |
| 18 |
17
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) → ( ( 1 / 𝑥 ) · 𝑥 ) = 1 ) |
| 19 |
2 4 6 8 10 12 14 16 18
|
isdrngd |
⊢ ( ⊤ → ℂfld ∈ DivRing ) |
| 20 |
19
|
mptru |
⊢ ℂfld ∈ DivRing |