Step |
Hyp |
Ref |
Expression |
1 |
|
cnre |
⊢ ( 𝐴 ∈ ℂ → ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ 𝐴 = ( 𝑎 + ( i · 𝑏 ) ) ) |
2 |
|
ax-rnegex |
⊢ ( 𝑎 ∈ ℝ → ∃ 𝑐 ∈ ℝ ( 𝑎 + 𝑐 ) = 0 ) |
3 |
|
ax-rnegex |
⊢ ( 𝑏 ∈ ℝ → ∃ 𝑑 ∈ ℝ ( 𝑏 + 𝑑 ) = 0 ) |
4 |
2 3
|
anim12i |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( ∃ 𝑐 ∈ ℝ ( 𝑎 + 𝑐 ) = 0 ∧ ∃ 𝑑 ∈ ℝ ( 𝑏 + 𝑑 ) = 0 ) ) |
5 |
|
reeanv |
⊢ ( ∃ 𝑐 ∈ ℝ ∃ 𝑑 ∈ ℝ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ↔ ( ∃ 𝑐 ∈ ℝ ( 𝑎 + 𝑐 ) = 0 ∧ ∃ 𝑑 ∈ ℝ ( 𝑏 + 𝑑 ) = 0 ) ) |
6 |
4 5
|
sylibr |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ∃ 𝑐 ∈ ℝ ∃ 𝑑 ∈ ℝ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) |
7 |
|
ax-icn |
⊢ i ∈ ℂ |
8 |
7
|
a1i |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → i ∈ ℂ ) |
9 |
|
simplrr |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → 𝑑 ∈ ℝ ) |
10 |
9
|
recnd |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → 𝑑 ∈ ℂ ) |
11 |
8 10
|
mulcld |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( i · 𝑑 ) ∈ ℂ ) |
12 |
|
simplrl |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → 𝑐 ∈ ℝ ) |
13 |
12
|
recnd |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → 𝑐 ∈ ℂ ) |
14 |
11 13
|
addcld |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( ( i · 𝑑 ) + 𝑐 ) ∈ ℂ ) |
15 |
|
simplll |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → 𝑎 ∈ ℝ ) |
16 |
15
|
recnd |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → 𝑎 ∈ ℂ ) |
17 |
|
simpllr |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → 𝑏 ∈ ℝ ) |
18 |
17
|
recnd |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → 𝑏 ∈ ℂ ) |
19 |
8 18
|
mulcld |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( i · 𝑏 ) ∈ ℂ ) |
20 |
16 19 11
|
addassd |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( ( 𝑎 + ( i · 𝑏 ) ) + ( i · 𝑑 ) ) = ( 𝑎 + ( ( i · 𝑏 ) + ( i · 𝑑 ) ) ) ) |
21 |
8 18 10
|
adddid |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( i · ( 𝑏 + 𝑑 ) ) = ( ( i · 𝑏 ) + ( i · 𝑑 ) ) ) |
22 |
|
simprr |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( 𝑏 + 𝑑 ) = 0 ) |
23 |
22
|
oveq2d |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( i · ( 𝑏 + 𝑑 ) ) = ( i · 0 ) ) |
24 |
|
mul01 |
⊢ ( i ∈ ℂ → ( i · 0 ) = 0 ) |
25 |
7 24
|
ax-mp |
⊢ ( i · 0 ) = 0 |
26 |
23 25
|
eqtrdi |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( i · ( 𝑏 + 𝑑 ) ) = 0 ) |
27 |
21 26
|
eqtr3d |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( ( i · 𝑏 ) + ( i · 𝑑 ) ) = 0 ) |
28 |
27
|
oveq2d |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( 𝑎 + ( ( i · 𝑏 ) + ( i · 𝑑 ) ) ) = ( 𝑎 + 0 ) ) |
29 |
|
addid1 |
⊢ ( 𝑎 ∈ ℂ → ( 𝑎 + 0 ) = 𝑎 ) |
30 |
16 29
|
syl |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( 𝑎 + 0 ) = 𝑎 ) |
31 |
20 28 30
|
3eqtrd |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( ( 𝑎 + ( i · 𝑏 ) ) + ( i · 𝑑 ) ) = 𝑎 ) |
32 |
31
|
oveq1d |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( ( ( 𝑎 + ( i · 𝑏 ) ) + ( i · 𝑑 ) ) + 𝑐 ) = ( 𝑎 + 𝑐 ) ) |
33 |
16 19
|
addcld |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( 𝑎 + ( i · 𝑏 ) ) ∈ ℂ ) |
34 |
33 11 13
|
addassd |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( ( ( 𝑎 + ( i · 𝑏 ) ) + ( i · 𝑑 ) ) + 𝑐 ) = ( ( 𝑎 + ( i · 𝑏 ) ) + ( ( i · 𝑑 ) + 𝑐 ) ) ) |
35 |
32 34
|
eqtr3d |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( 𝑎 + 𝑐 ) = ( ( 𝑎 + ( i · 𝑏 ) ) + ( ( i · 𝑑 ) + 𝑐 ) ) ) |
36 |
|
simprl |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( 𝑎 + 𝑐 ) = 0 ) |
37 |
35 36
|
eqtr3d |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( ( 𝑎 + ( i · 𝑏 ) ) + ( ( i · 𝑑 ) + 𝑐 ) ) = 0 ) |
38 |
|
oveq2 |
⊢ ( 𝑥 = ( ( i · 𝑑 ) + 𝑐 ) → ( ( 𝑎 + ( i · 𝑏 ) ) + 𝑥 ) = ( ( 𝑎 + ( i · 𝑏 ) ) + ( ( i · 𝑑 ) + 𝑐 ) ) ) |
39 |
38
|
eqeq1d |
⊢ ( 𝑥 = ( ( i · 𝑑 ) + 𝑐 ) → ( ( ( 𝑎 + ( i · 𝑏 ) ) + 𝑥 ) = 0 ↔ ( ( 𝑎 + ( i · 𝑏 ) ) + ( ( i · 𝑑 ) + 𝑐 ) ) = 0 ) ) |
40 |
39
|
rspcev |
⊢ ( ( ( ( i · 𝑑 ) + 𝑐 ) ∈ ℂ ∧ ( ( 𝑎 + ( i · 𝑏 ) ) + ( ( i · 𝑑 ) + 𝑐 ) ) = 0 ) → ∃ 𝑥 ∈ ℂ ( ( 𝑎 + ( i · 𝑏 ) ) + 𝑥 ) = 0 ) |
41 |
14 37 40
|
syl2anc |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ∃ 𝑥 ∈ ℂ ( ( 𝑎 + ( i · 𝑏 ) ) + 𝑥 ) = 0 ) |
42 |
41
|
ex |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) → ( ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) → ∃ 𝑥 ∈ ℂ ( ( 𝑎 + ( i · 𝑏 ) ) + 𝑥 ) = 0 ) ) |
43 |
42
|
rexlimdvva |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( ∃ 𝑐 ∈ ℝ ∃ 𝑑 ∈ ℝ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) → ∃ 𝑥 ∈ ℂ ( ( 𝑎 + ( i · 𝑏 ) ) + 𝑥 ) = 0 ) ) |
44 |
6 43
|
mpd |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ∃ 𝑥 ∈ ℂ ( ( 𝑎 + ( i · 𝑏 ) ) + 𝑥 ) = 0 ) |
45 |
|
oveq1 |
⊢ ( 𝐴 = ( 𝑎 + ( i · 𝑏 ) ) → ( 𝐴 + 𝑥 ) = ( ( 𝑎 + ( i · 𝑏 ) ) + 𝑥 ) ) |
46 |
45
|
eqeq1d |
⊢ ( 𝐴 = ( 𝑎 + ( i · 𝑏 ) ) → ( ( 𝐴 + 𝑥 ) = 0 ↔ ( ( 𝑎 + ( i · 𝑏 ) ) + 𝑥 ) = 0 ) ) |
47 |
46
|
rexbidv |
⊢ ( 𝐴 = ( 𝑎 + ( i · 𝑏 ) ) → ( ∃ 𝑥 ∈ ℂ ( 𝐴 + 𝑥 ) = 0 ↔ ∃ 𝑥 ∈ ℂ ( ( 𝑎 + ( i · 𝑏 ) ) + 𝑥 ) = 0 ) ) |
48 |
44 47
|
syl5ibrcom |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 𝐴 = ( 𝑎 + ( i · 𝑏 ) ) → ∃ 𝑥 ∈ ℂ ( 𝐴 + 𝑥 ) = 0 ) ) |
49 |
48
|
rexlimivv |
⊢ ( ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ 𝐴 = ( 𝑎 + ( i · 𝑏 ) ) → ∃ 𝑥 ∈ ℂ ( 𝐴 + 𝑥 ) = 0 ) |
50 |
1 49
|
syl |
⊢ ( 𝐴 ∈ ℂ → ∃ 𝑥 ∈ ℂ ( 𝐴 + 𝑥 ) = 0 ) |