Metamath Proof Explorer


Theorem cnegex2

Description: Existence of a left inverse for addition. (Contributed by Scott Fenton, 3-Jan-2013)

Ref Expression
Assertion cnegex2 ( 𝐴 ∈ ℂ → ∃ 𝑥 ∈ ℂ ( 𝑥 + 𝐴 ) = 0 )

Proof

Step Hyp Ref Expression
1 ax-icn i ∈ ℂ
2 1 1 mulcli ( i · i ) ∈ ℂ
3 mulcl ( ( ( i · i ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( i · i ) · 𝐴 ) ∈ ℂ )
4 2 3 mpan ( 𝐴 ∈ ℂ → ( ( i · i ) · 𝐴 ) ∈ ℂ )
5 mulid2 ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 )
6 5 oveq2d ( 𝐴 ∈ ℂ → ( ( ( i · i ) · 𝐴 ) + ( 1 · 𝐴 ) ) = ( ( ( i · i ) · 𝐴 ) + 𝐴 ) )
7 ax-i2m1 ( ( i · i ) + 1 ) = 0
8 7 oveq1i ( ( ( i · i ) + 1 ) · 𝐴 ) = ( 0 · 𝐴 )
9 ax-1cn 1 ∈ ℂ
10 adddir ( ( ( i · i ) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( ( i · i ) + 1 ) · 𝐴 ) = ( ( ( i · i ) · 𝐴 ) + ( 1 · 𝐴 ) ) )
11 2 9 10 mp3an12 ( 𝐴 ∈ ℂ → ( ( ( i · i ) + 1 ) · 𝐴 ) = ( ( ( i · i ) · 𝐴 ) + ( 1 · 𝐴 ) ) )
12 mul02 ( 𝐴 ∈ ℂ → ( 0 · 𝐴 ) = 0 )
13 8 11 12 3eqtr3a ( 𝐴 ∈ ℂ → ( ( ( i · i ) · 𝐴 ) + ( 1 · 𝐴 ) ) = 0 )
14 6 13 eqtr3d ( 𝐴 ∈ ℂ → ( ( ( i · i ) · 𝐴 ) + 𝐴 ) = 0 )
15 oveq1 ( 𝑥 = ( ( i · i ) · 𝐴 ) → ( 𝑥 + 𝐴 ) = ( ( ( i · i ) · 𝐴 ) + 𝐴 ) )
16 15 eqeq1d ( 𝑥 = ( ( i · i ) · 𝐴 ) → ( ( 𝑥 + 𝐴 ) = 0 ↔ ( ( ( i · i ) · 𝐴 ) + 𝐴 ) = 0 ) )
17 16 rspcev ( ( ( ( i · i ) · 𝐴 ) ∈ ℂ ∧ ( ( ( i · i ) · 𝐴 ) + 𝐴 ) = 0 ) → ∃ 𝑥 ∈ ℂ ( 𝑥 + 𝐴 ) = 0 )
18 4 14 17 syl2anc ( 𝐴 ∈ ℂ → ∃ 𝑥 ∈ ℂ ( 𝑥 + 𝐴 ) = 0 )