Step |
Hyp |
Ref |
Expression |
1 |
|
ax-icn |
⊢ i ∈ ℂ |
2 |
1 1
|
mulcli |
⊢ ( i · i ) ∈ ℂ |
3 |
|
mulcl |
⊢ ( ( ( i · i ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( i · i ) · 𝐴 ) ∈ ℂ ) |
4 |
2 3
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( ( i · i ) · 𝐴 ) ∈ ℂ ) |
5 |
|
mulid2 |
⊢ ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 ) |
6 |
5
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( i · i ) · 𝐴 ) + ( 1 · 𝐴 ) ) = ( ( ( i · i ) · 𝐴 ) + 𝐴 ) ) |
7 |
|
ax-i2m1 |
⊢ ( ( i · i ) + 1 ) = 0 |
8 |
7
|
oveq1i |
⊢ ( ( ( i · i ) + 1 ) · 𝐴 ) = ( 0 · 𝐴 ) |
9 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
10 |
|
adddir |
⊢ ( ( ( i · i ) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( ( i · i ) + 1 ) · 𝐴 ) = ( ( ( i · i ) · 𝐴 ) + ( 1 · 𝐴 ) ) ) |
11 |
2 9 10
|
mp3an12 |
⊢ ( 𝐴 ∈ ℂ → ( ( ( i · i ) + 1 ) · 𝐴 ) = ( ( ( i · i ) · 𝐴 ) + ( 1 · 𝐴 ) ) ) |
12 |
|
mul02 |
⊢ ( 𝐴 ∈ ℂ → ( 0 · 𝐴 ) = 0 ) |
13 |
8 11 12
|
3eqtr3a |
⊢ ( 𝐴 ∈ ℂ → ( ( ( i · i ) · 𝐴 ) + ( 1 · 𝐴 ) ) = 0 ) |
14 |
6 13
|
eqtr3d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( i · i ) · 𝐴 ) + 𝐴 ) = 0 ) |
15 |
|
oveq1 |
⊢ ( 𝑥 = ( ( i · i ) · 𝐴 ) → ( 𝑥 + 𝐴 ) = ( ( ( i · i ) · 𝐴 ) + 𝐴 ) ) |
16 |
15
|
eqeq1d |
⊢ ( 𝑥 = ( ( i · i ) · 𝐴 ) → ( ( 𝑥 + 𝐴 ) = 0 ↔ ( ( ( i · i ) · 𝐴 ) + 𝐴 ) = 0 ) ) |
17 |
16
|
rspcev |
⊢ ( ( ( ( i · i ) · 𝐴 ) ∈ ℂ ∧ ( ( ( i · i ) · 𝐴 ) + 𝐴 ) = 0 ) → ∃ 𝑥 ∈ ℂ ( 𝑥 + 𝐴 ) = 0 ) |
18 |
4 14 17
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ∃ 𝑥 ∈ ℂ ( 𝑥 + 𝐴 ) = 0 ) |