Metamath Proof Explorer


Theorem cnelprrecn

Description: Complex numbers are a subset of the pair of real and complex numbers . (Contributed by David A. Wheeler, 8-Dec-2018)

Ref Expression
Assertion cnelprrecn ℂ ∈ { ℝ , ℂ }

Proof

Step Hyp Ref Expression
1 cnex ℂ ∈ V
2 1 prid2 ℂ ∈ { ℝ , ℂ }