Step |
Hyp |
Ref |
Expression |
1 |
|
cnextf.1 |
⊢ 𝐶 = ∪ 𝐽 |
2 |
|
cnextf.2 |
⊢ 𝐵 = ∪ 𝐾 |
3 |
|
cnextf.3 |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
4 |
|
cnextf.4 |
⊢ ( 𝜑 → 𝐾 ∈ Haus ) |
5 |
|
cnextf.5 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
6 |
|
cnextf.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |
7 |
|
cnextf.6 |
⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝐶 ) |
8 |
|
cnextf.7 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) |
9 |
1 2
|
cnextfun |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Haus ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝐶 ) ) → Fun ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ) |
10 |
3 4 5 6 9
|
syl22anc |
⊢ ( 𝜑 → Fun ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ) |
11 |
|
dfdm3 |
⊢ dom ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) = { 𝑥 ∣ ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) } |
12 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝜑 ) |
13 |
7
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ 𝑥 ∈ 𝐶 ) ) |
14 |
13
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) |
15 |
|
n0 |
⊢ ( ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
16 |
8 15
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ∃ 𝑦 𝑦 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
17 |
|
haustop |
⊢ ( 𝐾 ∈ Haus → 𝐾 ∈ Top ) |
18 |
4 17
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
19 |
1 2
|
cnextfval |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝐶 ) ) → ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) = ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) |
20 |
3 18 5 6 19
|
syl22anc |
⊢ ( 𝜑 → ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) = ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) |
21 |
20
|
eleq2d |
⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) ) |
22 |
|
opeliunxp |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ↔ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) |
23 |
21 22
|
bitrdi |
⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ↔ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) ) |
24 |
23
|
exbidv |
⊢ ( 𝜑 → ( ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ↔ ∃ 𝑦 ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) ) |
25 |
|
19.42v |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ↔ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∧ ∃ 𝑦 𝑦 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) |
26 |
24 25
|
bitrdi |
⊢ ( 𝜑 → ( ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ↔ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∧ ∃ 𝑦 𝑦 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) ) |
27 |
26
|
biimpar |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∧ ∃ 𝑦 𝑦 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) → ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ) |
28 |
12 14 16 27
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ) |
29 |
26
|
simprbda |
⊢ ( ( 𝜑 ∧ ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ) → 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) |
30 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ 𝑥 ∈ 𝐶 ) ) |
31 |
29 30
|
mpbid |
⊢ ( ( 𝜑 ∧ ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ) → 𝑥 ∈ 𝐶 ) |
32 |
28 31
|
impbida |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↔ ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ) ) |
33 |
32
|
abbi2dv |
⊢ ( 𝜑 → 𝐶 = { 𝑥 ∣ ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) } ) |
34 |
11 33
|
eqtr4id |
⊢ ( 𝜑 → dom ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) = 𝐶 ) |
35 |
|
df-fn |
⊢ ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) Fn 𝐶 ↔ ( Fun ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ∧ dom ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) = 𝐶 ) ) |
36 |
10 34 35
|
sylanbrc |
⊢ ( 𝜑 → ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) Fn 𝐶 ) |
37 |
20
|
rneqd |
⊢ ( 𝜑 → ran ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) = ran ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) |
38 |
|
rniun |
⊢ ran ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) = ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ran ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
39 |
|
vex |
⊢ 𝑥 ∈ V |
40 |
39
|
snnz |
⊢ { 𝑥 } ≠ ∅ |
41 |
|
rnxp |
⊢ ( { 𝑥 } ≠ ∅ → ran ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) = ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
42 |
40 41
|
ax-mp |
⊢ ran ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) = ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) |
43 |
13
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) → 𝑥 ∈ 𝐶 ) |
44 |
2
|
toptopon |
⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) |
45 |
18 44
|
sylib |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) |
46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) |
47 |
1
|
toptopon |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝐶 ) ) |
48 |
3 47
|
sylib |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝐶 ) ) |
49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐽 ∈ ( TopOn ‘ 𝐶 ) ) |
50 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐴 ⊆ 𝐶 ) |
51 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ 𝐶 ) |
52 |
|
trnei |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝐶 ) ∧ 𝐴 ⊆ 𝐶 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) ) |
53 |
52
|
biimpa |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝐶 ) ∧ 𝐴 ⊆ 𝐶 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) |
54 |
49 50 51 14 53
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) |
55 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
56 |
|
flfelbas |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝐵 ) ∧ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑦 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) → 𝑦 ∈ 𝐵 ) |
57 |
56
|
ex |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝐵 ) ∧ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝑦 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) → 𝑦 ∈ 𝐵 ) ) |
58 |
57
|
ssrdv |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝐵 ) ∧ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ⊆ 𝐵 ) |
59 |
46 54 55 58
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ⊆ 𝐵 ) |
60 |
43 59
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ⊆ 𝐵 ) |
61 |
42 60
|
eqsstrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) → ran ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ⊆ 𝐵 ) |
62 |
61
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ran ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ⊆ 𝐵 ) |
63 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ran ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ⊆ 𝐵 ↔ ∀ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ran ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ⊆ 𝐵 ) |
64 |
62 63
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ran ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ⊆ 𝐵 ) |
65 |
38 64
|
eqsstrid |
⊢ ( 𝜑 → ran ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ⊆ 𝐵 ) |
66 |
37 65
|
eqsstrd |
⊢ ( 𝜑 → ran ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ⊆ 𝐵 ) |
67 |
|
df-f |
⊢ ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) : 𝐶 ⟶ 𝐵 ↔ ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) Fn 𝐶 ∧ ran ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ⊆ 𝐵 ) ) |
68 |
36 66 67
|
sylanbrc |
⊢ ( 𝜑 → ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) : 𝐶 ⟶ 𝐵 ) |