Step |
Hyp |
Ref |
Expression |
1 |
|
cnextfres.c |
⊢ 𝐶 = ∪ 𝐽 |
2 |
|
cnextfres.b |
⊢ 𝐵 = ∪ 𝐾 |
3 |
|
cnextfres.j |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
4 |
|
cnextfres.k |
⊢ ( 𝜑 → 𝐾 ∈ Haus ) |
5 |
|
cnextfres.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |
6 |
|
cnextfres.1 |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ) |
7 |
|
cnextfres.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
8 |
|
eqid |
⊢ ∪ ( 𝐽 ↾t 𝐴 ) = ∪ ( 𝐽 ↾t 𝐴 ) |
9 |
8 2
|
cnf |
⊢ ( 𝐹 ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) → 𝐹 : ∪ ( 𝐽 ↾t 𝐴 ) ⟶ 𝐵 ) |
10 |
6 9
|
syl |
⊢ ( 𝜑 → 𝐹 : ∪ ( 𝐽 ↾t 𝐴 ) ⟶ 𝐵 ) |
11 |
1
|
restuni |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐶 ) → 𝐴 = ∪ ( 𝐽 ↾t 𝐴 ) ) |
12 |
3 5 11
|
syl2anc |
⊢ ( 𝜑 → 𝐴 = ∪ ( 𝐽 ↾t 𝐴 ) ) |
13 |
12
|
feq2d |
⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ 𝐹 : ∪ ( 𝐽 ↾t 𝐴 ) ⟶ 𝐵 ) ) |
14 |
10 13
|
mpbird |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
15 |
1 2
|
cnextfun |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Haus ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝐶 ) ) → Fun ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ) |
16 |
3 4 14 5 15
|
syl22anc |
⊢ ( 𝜑 → Fun ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ) |
17 |
1
|
sscls |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐶 ) → 𝐴 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) |
18 |
3 5 17
|
syl2anc |
⊢ ( 𝜑 → 𝐴 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) |
19 |
18 7
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) |
20 |
1 2 3 5 6 7
|
flfcntr |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
21 |
|
sneq |
⊢ ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } ) |
22 |
21
|
fveq2d |
⊢ ( 𝑥 = 𝑋 → ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) = ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ) |
23 |
22
|
oveq1d |
⊢ ( 𝑥 = 𝑋 → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) = ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) |
24 |
23
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) = ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ) |
25 |
24
|
fveq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) = ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
26 |
25
|
opeliunxp2 |
⊢ ( 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ↔ ( 𝑋 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) |
27 |
19 20 26
|
sylanbrc |
⊢ ( 𝜑 → 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) |
28 |
|
haustop |
⊢ ( 𝐾 ∈ Haus → 𝐾 ∈ Top ) |
29 |
4 28
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
30 |
1 2
|
cnextfval |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝐶 ) ) → ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) = ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) |
31 |
3 29 14 5 30
|
syl22anc |
⊢ ( 𝜑 → ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) = ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) |
32 |
27 31
|
eleqtrrd |
⊢ ( 𝜑 → 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ) |
33 |
|
df-br |
⊢ ( 𝑋 ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ( 𝐹 ‘ 𝑋 ) ↔ 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ) |
34 |
32 33
|
sylibr |
⊢ ( 𝜑 → 𝑋 ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ( 𝐹 ‘ 𝑋 ) ) |
35 |
|
funbrfv |
⊢ ( Fun ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) → ( 𝑋 ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ( 𝐹 ‘ 𝑋 ) → ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
36 |
16 34 35
|
sylc |
⊢ ( 𝜑 → ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) |