Step |
Hyp |
Ref |
Expression |
1 |
|
unieq |
⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽 ) |
2 |
1
|
oveq2d |
⊢ ( 𝑗 = 𝐽 → ( ∪ 𝑘 ↑pm ∪ 𝑗 ) = ( ∪ 𝑘 ↑pm ∪ 𝐽 ) ) |
3 |
|
fveq2 |
⊢ ( 𝑗 = 𝐽 → ( cls ‘ 𝑗 ) = ( cls ‘ 𝐽 ) ) |
4 |
3
|
fveq1d |
⊢ ( 𝑗 = 𝐽 → ( ( cls ‘ 𝑗 ) ‘ dom 𝑓 ) = ( ( cls ‘ 𝐽 ) ‘ dom 𝑓 ) ) |
5 |
|
fveq2 |
⊢ ( 𝑗 = 𝐽 → ( nei ‘ 𝑗 ) = ( nei ‘ 𝐽 ) ) |
6 |
5
|
fveq1d |
⊢ ( 𝑗 = 𝐽 → ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) |
7 |
6
|
oveq1d |
⊢ ( 𝑗 = 𝐽 → ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) = ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) |
8 |
7
|
oveq2d |
⊢ ( 𝑗 = 𝐽 → ( 𝑘 fLimf ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) = ( 𝑘 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ) |
9 |
8
|
fveq1d |
⊢ ( 𝑗 = 𝐽 → ( ( 𝑘 fLimf ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) = ( ( 𝑘 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) |
10 |
9
|
xpeq2d |
⊢ ( 𝑗 = 𝐽 → ( { 𝑥 } × ( ( 𝑘 fLimf ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) = ( { 𝑥 } × ( ( 𝑘 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) ) |
11 |
4 10
|
iuneq12d |
⊢ ( 𝑗 = 𝐽 → ∪ 𝑥 ∈ ( ( cls ‘ 𝑗 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑘 fLimf ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) = ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑘 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) ) |
12 |
2 11
|
mpteq12dv |
⊢ ( 𝑗 = 𝐽 → ( 𝑓 ∈ ( ∪ 𝑘 ↑pm ∪ 𝑗 ) ↦ ∪ 𝑥 ∈ ( ( cls ‘ 𝑗 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑘 fLimf ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) ) = ( 𝑓 ∈ ( ∪ 𝑘 ↑pm ∪ 𝐽 ) ↦ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑘 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) ) ) |
13 |
|
unieq |
⊢ ( 𝑘 = 𝐾 → ∪ 𝑘 = ∪ 𝐾 ) |
14 |
13
|
oveq1d |
⊢ ( 𝑘 = 𝐾 → ( ∪ 𝑘 ↑pm ∪ 𝐽 ) = ( ∪ 𝐾 ↑pm ∪ 𝐽 ) ) |
15 |
|
oveq1 |
⊢ ( 𝑘 = 𝐾 → ( 𝑘 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) = ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ) |
16 |
15
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝑘 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) = ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) |
17 |
16
|
xpeq2d |
⊢ ( 𝑘 = 𝐾 → ( { 𝑥 } × ( ( 𝑘 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) = ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) ) |
18 |
17
|
iuneq2d |
⊢ ( 𝑘 = 𝐾 → ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑘 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) = ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) ) |
19 |
14 18
|
mpteq12dv |
⊢ ( 𝑘 = 𝐾 → ( 𝑓 ∈ ( ∪ 𝑘 ↑pm ∪ 𝐽 ) ↦ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑘 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) ) = ( 𝑓 ∈ ( ∪ 𝐾 ↑pm ∪ 𝐽 ) ↦ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) ) ) |
20 |
|
df-cnext |
⊢ CnExt = ( 𝑗 ∈ Top , 𝑘 ∈ Top ↦ ( 𝑓 ∈ ( ∪ 𝑘 ↑pm ∪ 𝑗 ) ↦ ∪ 𝑥 ∈ ( ( cls ‘ 𝑗 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑘 fLimf ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) ) ) |
21 |
|
ovex |
⊢ ( ∪ 𝐾 ↑pm ∪ 𝐽 ) ∈ V |
22 |
21
|
mptex |
⊢ ( 𝑓 ∈ ( ∪ 𝐾 ↑pm ∪ 𝐽 ) ↦ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) ) ∈ V |
23 |
12 19 20 22
|
ovmpo |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( 𝐽 CnExt 𝐾 ) = ( 𝑓 ∈ ( ∪ 𝐾 ↑pm ∪ 𝐽 ) ↦ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) ) ) |