Metamath Proof Explorer


Theorem cnextval

Description: The function applying continuous extension to a given function f . (Contributed by Thierry Arnoux, 1-Dec-2017)

Ref Expression
Assertion cnextval ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( 𝐽 CnExt 𝐾 ) = ( 𝑓 ∈ ( 𝐾pm 𝐽 ) ↦ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) ) )

Proof

Step Hyp Ref Expression
1 unieq ( 𝑗 = 𝐽 𝑗 = 𝐽 )
2 1 oveq2d ( 𝑗 = 𝐽 → ( 𝑘pm 𝑗 ) = ( 𝑘pm 𝐽 ) )
3 fveq2 ( 𝑗 = 𝐽 → ( cls ‘ 𝑗 ) = ( cls ‘ 𝐽 ) )
4 3 fveq1d ( 𝑗 = 𝐽 → ( ( cls ‘ 𝑗 ) ‘ dom 𝑓 ) = ( ( cls ‘ 𝐽 ) ‘ dom 𝑓 ) )
5 fveq2 ( 𝑗 = 𝐽 → ( nei ‘ 𝑗 ) = ( nei ‘ 𝐽 ) )
6 5 fveq1d ( 𝑗 = 𝐽 → ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) )
7 6 oveq1d ( 𝑗 = 𝐽 → ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) = ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) )
8 7 oveq2d ( 𝑗 = 𝐽 → ( 𝑘 fLimf ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) = ( 𝑘 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) )
9 8 fveq1d ( 𝑗 = 𝐽 → ( ( 𝑘 fLimf ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) = ( ( 𝑘 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) )
10 9 xpeq2d ( 𝑗 = 𝐽 → ( { 𝑥 } × ( ( 𝑘 fLimf ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) = ( { 𝑥 } × ( ( 𝑘 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) )
11 4 10 iuneq12d ( 𝑗 = 𝐽 𝑥 ∈ ( ( cls ‘ 𝑗 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑘 fLimf ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) = 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑘 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) )
12 2 11 mpteq12dv ( 𝑗 = 𝐽 → ( 𝑓 ∈ ( 𝑘pm 𝑗 ) ↦ 𝑥 ∈ ( ( cls ‘ 𝑗 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑘 fLimf ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) ) = ( 𝑓 ∈ ( 𝑘pm 𝐽 ) ↦ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑘 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) ) )
13 unieq ( 𝑘 = 𝐾 𝑘 = 𝐾 )
14 13 oveq1d ( 𝑘 = 𝐾 → ( 𝑘pm 𝐽 ) = ( 𝐾pm 𝐽 ) )
15 oveq1 ( 𝑘 = 𝐾 → ( 𝑘 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) = ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) )
16 15 fveq1d ( 𝑘 = 𝐾 → ( ( 𝑘 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) = ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) )
17 16 xpeq2d ( 𝑘 = 𝐾 → ( { 𝑥 } × ( ( 𝑘 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) = ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) )
18 17 iuneq2d ( 𝑘 = 𝐾 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑘 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) = 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) )
19 14 18 mpteq12dv ( 𝑘 = 𝐾 → ( 𝑓 ∈ ( 𝑘pm 𝐽 ) ↦ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑘 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) ) = ( 𝑓 ∈ ( 𝐾pm 𝐽 ) ↦ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) ) )
20 df-cnext CnExt = ( 𝑗 ∈ Top , 𝑘 ∈ Top ↦ ( 𝑓 ∈ ( 𝑘pm 𝑗 ) ↦ 𝑥 ∈ ( ( cls ‘ 𝑗 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑘 fLimf ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) ) )
21 ovex ( 𝐾pm 𝐽 ) ∈ V
22 21 mptex ( 𝑓 ∈ ( 𝐾pm 𝐽 ) ↦ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) ) ∈ V
23 12 19 20 22 ovmpo ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( 𝐽 CnExt 𝐾 ) = ( 𝑓 ∈ ( 𝐾pm 𝐽 ) ↦ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) ) )