Metamath Proof Explorer


Theorem cnf

Description: A continuous function is a mapping. (Contributed by FL, 8-Dec-2006) (Revised by Mario Carneiro, 21-Aug-2015)

Ref Expression
Hypotheses iscnp2.1 𝑋 = 𝐽
iscnp2.2 𝑌 = 𝐾
Assertion cnf ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝑋𝑌 )

Proof

Step Hyp Ref Expression
1 iscnp2.1 𝑋 = 𝐽
2 iscnp2.2 𝑌 = 𝐾
3 1 2 iscn2 ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝑋𝑌 ∧ ∀ 𝑥𝐾 ( 𝐹𝑥 ) ∈ 𝐽 ) ) )
4 3 simprbi ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( 𝐹 : 𝑋𝑌 ∧ ∀ 𝑥𝐾 ( 𝐹𝑥 ) ∈ 𝐽 ) )
5 4 simpld ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝑋𝑌 )