Metamath Proof Explorer
Theorem cnf
Description: A continuous function is a mapping. (Contributed by FL, 8-Dec-2006)
(Revised by Mario Carneiro, 21-Aug-2015)
|
|
Ref |
Expression |
|
Hypotheses |
iscnp2.1 |
⊢ 𝑋 = ∪ 𝐽 |
|
|
iscnp2.2 |
⊢ 𝑌 = ∪ 𝐾 |
|
Assertion |
cnf |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
iscnp2.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
iscnp2.2 |
⊢ 𝑌 = ∪ 𝐾 |
3 |
1 2
|
iscn2 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝐾 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
4 |
3
|
simprbi |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝐾 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) |
5 |
4
|
simpld |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |