Metamath Proof Explorer


Theorem cnf2

Description: A continuous function is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion cnf2 ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 : 𝑋𝑌 )

Proof

Step Hyp Ref Expression
1 iscn ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋𝑌 ∧ ∀ 𝑥𝐾 ( 𝐹𝑥 ) ∈ 𝐽 ) ) )
2 1 simprbda ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 : 𝑋𝑌 )
3 2 3impa ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 : 𝑋𝑌 )