| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnfcom.s | ⊢ 𝑆  =  dom  ( ω  CNF  𝐴 ) | 
						
							| 2 |  | cnfcom.a | ⊢ ( 𝜑  →  𝐴  ∈  On ) | 
						
							| 3 |  | cnfcom.b | ⊢ ( 𝜑  →  𝐵  ∈  ( ω  ↑o  𝐴 ) ) | 
						
							| 4 |  | cnfcom.f | ⊢ 𝐹  =  ( ◡ ( ω  CNF  𝐴 ) ‘ 𝐵 ) | 
						
							| 5 |  | cnfcom.g | ⊢ 𝐺  =  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) | 
						
							| 6 |  | cnfcom.h | ⊢ 𝐻  =  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( 𝑀  +o  𝑧 ) ) ,  ∅ ) | 
						
							| 7 |  | cnfcom.t | ⊢ 𝑇  =  seqω ( ( 𝑘  ∈  V ,  𝑓  ∈  V  ↦  𝐾 ) ,  ∅ ) | 
						
							| 8 |  | cnfcom.m | ⊢ 𝑀  =  ( ( ω  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 9 |  | cnfcom.k | ⊢ 𝐾  =  ( ( 𝑥  ∈  𝑀  ↦  ( dom  𝑓  +o  𝑥 ) )  ∪  ◡ ( 𝑥  ∈  dom  𝑓  ↦  ( 𝑀  +o  𝑥 ) ) ) | 
						
							| 10 |  | cnfcom.1 | ⊢ ( 𝜑  →  𝐼  ∈  dom  𝐺 ) | 
						
							| 11 |  | omelon | ⊢ ω  ∈  On | 
						
							| 12 | 11 | a1i | ⊢ ( 𝜑  →  ω  ∈  On ) | 
						
							| 13 | 1 12 2 | cantnff1o | ⊢ ( 𝜑  →  ( ω  CNF  𝐴 ) : 𝑆 –1-1-onto→ ( ω  ↑o  𝐴 ) ) | 
						
							| 14 |  | f1ocnv | ⊢ ( ( ω  CNF  𝐴 ) : 𝑆 –1-1-onto→ ( ω  ↑o  𝐴 )  →  ◡ ( ω  CNF  𝐴 ) : ( ω  ↑o  𝐴 ) –1-1-onto→ 𝑆 ) | 
						
							| 15 |  | f1of | ⊢ ( ◡ ( ω  CNF  𝐴 ) : ( ω  ↑o  𝐴 ) –1-1-onto→ 𝑆  →  ◡ ( ω  CNF  𝐴 ) : ( ω  ↑o  𝐴 ) ⟶ 𝑆 ) | 
						
							| 16 | 13 14 15 | 3syl | ⊢ ( 𝜑  →  ◡ ( ω  CNF  𝐴 ) : ( ω  ↑o  𝐴 ) ⟶ 𝑆 ) | 
						
							| 17 | 16 3 | ffvelcdmd | ⊢ ( 𝜑  →  ( ◡ ( ω  CNF  𝐴 ) ‘ 𝐵 )  ∈  𝑆 ) | 
						
							| 18 | 4 17 | eqeltrid | ⊢ ( 𝜑  →  𝐹  ∈  𝑆 ) | 
						
							| 19 | 1 12 2 5 18 | cantnfcl | ⊢ ( 𝜑  →  (  E   We  ( 𝐹  supp  ∅ )  ∧  dom  𝐺  ∈  ω ) ) | 
						
							| 20 | 19 | simprd | ⊢ ( 𝜑  →  dom  𝐺  ∈  ω ) | 
						
							| 21 |  | elnn | ⊢ ( ( 𝐼  ∈  dom  𝐺  ∧  dom  𝐺  ∈  ω )  →  𝐼  ∈  ω ) | 
						
							| 22 | 10 20 21 | syl2anc | ⊢ ( 𝜑  →  𝐼  ∈  ω ) | 
						
							| 23 |  | eleq1 | ⊢ ( 𝑤  =  𝐼  →  ( 𝑤  ∈  dom  𝐺  ↔  𝐼  ∈  dom  𝐺 ) ) | 
						
							| 24 |  | suceq | ⊢ ( 𝑤  =  𝐼  →  suc  𝑤  =  suc  𝐼 ) | 
						
							| 25 | 24 | fveq2d | ⊢ ( 𝑤  =  𝐼  →  ( 𝑇 ‘ suc  𝑤 )  =  ( 𝑇 ‘ suc  𝐼 ) ) | 
						
							| 26 | 24 | fveq2d | ⊢ ( 𝑤  =  𝐼  →  ( 𝐻 ‘ suc  𝑤 )  =  ( 𝐻 ‘ suc  𝐼 ) ) | 
						
							| 27 |  | fveq2 | ⊢ ( 𝑤  =  𝐼  →  ( 𝐺 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝐼 ) ) | 
						
							| 28 | 27 | oveq2d | ⊢ ( 𝑤  =  𝐼  →  ( ω  ↑o  ( 𝐺 ‘ 𝑤 ) )  =  ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) ) ) | 
						
							| 29 |  | 2fveq3 | ⊢ ( 𝑤  =  𝐼  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) | 
						
							| 30 | 28 29 | oveq12d | ⊢ ( 𝑤  =  𝐼  →  ( ( ω  ↑o  ( 𝐺 ‘ 𝑤 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) )  =  ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) | 
						
							| 31 | 25 26 30 | f1oeq123d | ⊢ ( 𝑤  =  𝐼  →  ( ( 𝑇 ‘ suc  𝑤 ) : ( 𝐻 ‘ suc  𝑤 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑤 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) )  ↔  ( 𝑇 ‘ suc  𝐼 ) : ( 𝐻 ‘ suc  𝐼 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) | 
						
							| 32 | 23 31 | imbi12d | ⊢ ( 𝑤  =  𝐼  →  ( ( 𝑤  ∈  dom  𝐺  →  ( 𝑇 ‘ suc  𝑤 ) : ( 𝐻 ‘ suc  𝑤 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑤 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) )  ↔  ( 𝐼  ∈  dom  𝐺  →  ( 𝑇 ‘ suc  𝐼 ) : ( 𝐻 ‘ suc  𝐼 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) ) | 
						
							| 33 | 32 | imbi2d | ⊢ ( 𝑤  =  𝐼  →  ( ( 𝜑  →  ( 𝑤  ∈  dom  𝐺  →  ( 𝑇 ‘ suc  𝑤 ) : ( 𝐻 ‘ suc  𝑤 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑤 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ) )  ↔  ( 𝜑  →  ( 𝐼  ∈  dom  𝐺  →  ( 𝑇 ‘ suc  𝐼 ) : ( 𝐻 ‘ suc  𝐼 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) ) ) | 
						
							| 34 |  | eleq1 | ⊢ ( 𝑤  =  ∅  →  ( 𝑤  ∈  dom  𝐺  ↔  ∅  ∈  dom  𝐺 ) ) | 
						
							| 35 |  | suceq | ⊢ ( 𝑤  =  ∅  →  suc  𝑤  =  suc  ∅ ) | 
						
							| 36 | 35 | fveq2d | ⊢ ( 𝑤  =  ∅  →  ( 𝑇 ‘ suc  𝑤 )  =  ( 𝑇 ‘ suc  ∅ ) ) | 
						
							| 37 | 35 | fveq2d | ⊢ ( 𝑤  =  ∅  →  ( 𝐻 ‘ suc  𝑤 )  =  ( 𝐻 ‘ suc  ∅ ) ) | 
						
							| 38 |  | fveq2 | ⊢ ( 𝑤  =  ∅  →  ( 𝐺 ‘ 𝑤 )  =  ( 𝐺 ‘ ∅ ) ) | 
						
							| 39 | 38 | oveq2d | ⊢ ( 𝑤  =  ∅  →  ( ω  ↑o  ( 𝐺 ‘ 𝑤 ) )  =  ( ω  ↑o  ( 𝐺 ‘ ∅ ) ) ) | 
						
							| 40 |  | 2fveq3 | ⊢ ( 𝑤  =  ∅  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) | 
						
							| 41 | 39 40 | oveq12d | ⊢ ( 𝑤  =  ∅  →  ( ( ω  ↑o  ( 𝐺 ‘ 𝑤 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) )  =  ( ( ω  ↑o  ( 𝐺 ‘ ∅ ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ) | 
						
							| 42 | 36 37 41 | f1oeq123d | ⊢ ( 𝑤  =  ∅  →  ( ( 𝑇 ‘ suc  𝑤 ) : ( 𝐻 ‘ suc  𝑤 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑤 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) )  ↔  ( 𝑇 ‘ suc  ∅ ) : ( 𝐻 ‘ suc  ∅ ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ ∅ ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ) ) | 
						
							| 43 | 34 42 | imbi12d | ⊢ ( 𝑤  =  ∅  →  ( ( 𝑤  ∈  dom  𝐺  →  ( 𝑇 ‘ suc  𝑤 ) : ( 𝐻 ‘ suc  𝑤 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑤 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) )  ↔  ( ∅  ∈  dom  𝐺  →  ( 𝑇 ‘ suc  ∅ ) : ( 𝐻 ‘ suc  ∅ ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ ∅ ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ) ) ) | 
						
							| 44 |  | eleq1 | ⊢ ( 𝑤  =  𝑦  →  ( 𝑤  ∈  dom  𝐺  ↔  𝑦  ∈  dom  𝐺 ) ) | 
						
							| 45 |  | suceq | ⊢ ( 𝑤  =  𝑦  →  suc  𝑤  =  suc  𝑦 ) | 
						
							| 46 | 45 | fveq2d | ⊢ ( 𝑤  =  𝑦  →  ( 𝑇 ‘ suc  𝑤 )  =  ( 𝑇 ‘ suc  𝑦 ) ) | 
						
							| 47 | 45 | fveq2d | ⊢ ( 𝑤  =  𝑦  →  ( 𝐻 ‘ suc  𝑤 )  =  ( 𝐻 ‘ suc  𝑦 ) ) | 
						
							| 48 |  | fveq2 | ⊢ ( 𝑤  =  𝑦  →  ( 𝐺 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑦 ) ) | 
						
							| 49 | 48 | oveq2d | ⊢ ( 𝑤  =  𝑦  →  ( ω  ↑o  ( 𝐺 ‘ 𝑤 ) )  =  ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 50 |  | 2fveq3 | ⊢ ( 𝑤  =  𝑦  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 51 | 49 50 | oveq12d | ⊢ ( 𝑤  =  𝑦  →  ( ( ω  ↑o  ( 𝐺 ‘ 𝑤 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) )  =  ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) | 
						
							| 52 | 46 47 51 | f1oeq123d | ⊢ ( 𝑤  =  𝑦  →  ( ( 𝑇 ‘ suc  𝑤 ) : ( 𝐻 ‘ suc  𝑤 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑤 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) )  ↔  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) | 
						
							| 53 | 44 52 | imbi12d | ⊢ ( 𝑤  =  𝑦  →  ( ( 𝑤  ∈  dom  𝐺  →  ( 𝑇 ‘ suc  𝑤 ) : ( 𝐻 ‘ suc  𝑤 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑤 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) )  ↔  ( 𝑦  ∈  dom  𝐺  →  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 54 |  | eleq1 | ⊢ ( 𝑤  =  suc  𝑦  →  ( 𝑤  ∈  dom  𝐺  ↔  suc  𝑦  ∈  dom  𝐺 ) ) | 
						
							| 55 |  | suceq | ⊢ ( 𝑤  =  suc  𝑦  →  suc  𝑤  =  suc  suc  𝑦 ) | 
						
							| 56 | 55 | fveq2d | ⊢ ( 𝑤  =  suc  𝑦  →  ( 𝑇 ‘ suc  𝑤 )  =  ( 𝑇 ‘ suc  suc  𝑦 ) ) | 
						
							| 57 | 55 | fveq2d | ⊢ ( 𝑤  =  suc  𝑦  →  ( 𝐻 ‘ suc  𝑤 )  =  ( 𝐻 ‘ suc  suc  𝑦 ) ) | 
						
							| 58 |  | fveq2 | ⊢ ( 𝑤  =  suc  𝑦  →  ( 𝐺 ‘ 𝑤 )  =  ( 𝐺 ‘ suc  𝑦 ) ) | 
						
							| 59 | 58 | oveq2d | ⊢ ( 𝑤  =  suc  𝑦  →  ( ω  ↑o  ( 𝐺 ‘ 𝑤 ) )  =  ( ω  ↑o  ( 𝐺 ‘ suc  𝑦 ) ) ) | 
						
							| 60 |  | 2fveq3 | ⊢ ( 𝑤  =  suc  𝑦  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ suc  𝑦 ) ) ) | 
						
							| 61 | 59 60 | oveq12d | ⊢ ( 𝑤  =  suc  𝑦  →  ( ( ω  ↑o  ( 𝐺 ‘ 𝑤 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) )  =  ( ( ω  ↑o  ( 𝐺 ‘ suc  𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ suc  𝑦 ) ) ) ) | 
						
							| 62 | 56 57 61 | f1oeq123d | ⊢ ( 𝑤  =  suc  𝑦  →  ( ( 𝑇 ‘ suc  𝑤 ) : ( 𝐻 ‘ suc  𝑤 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑤 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) )  ↔  ( 𝑇 ‘ suc  suc  𝑦 ) : ( 𝐻 ‘ suc  suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ suc  𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ suc  𝑦 ) ) ) ) ) | 
						
							| 63 | 54 62 | imbi12d | ⊢ ( 𝑤  =  suc  𝑦  →  ( ( 𝑤  ∈  dom  𝐺  →  ( 𝑇 ‘ suc  𝑤 ) : ( 𝐻 ‘ suc  𝑤 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑤 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) )  ↔  ( suc  𝑦  ∈  dom  𝐺  →  ( 𝑇 ‘ suc  suc  𝑦 ) : ( 𝐻 ‘ suc  suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ suc  𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ suc  𝑦 ) ) ) ) ) ) | 
						
							| 64 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ∅  ∈  dom  𝐺 )  →  𝐴  ∈  On ) | 
						
							| 65 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ∅  ∈  dom  𝐺 )  →  𝐵  ∈  ( ω  ↑o  𝐴 ) ) | 
						
							| 66 |  | simpr | ⊢ ( ( 𝜑  ∧  ∅  ∈  dom  𝐺 )  →  ∅  ∈  dom  𝐺 ) | 
						
							| 67 | 11 | a1i | ⊢ ( ( 𝜑  ∧  ∅  ∈  dom  𝐺 )  →  ω  ∈  On ) | 
						
							| 68 |  | suppssdm | ⊢ ( 𝐹  supp  ∅ )  ⊆  dom  𝐹 | 
						
							| 69 | 1 12 2 | cantnfs | ⊢ ( 𝜑  →  ( 𝐹  ∈  𝑆  ↔  ( 𝐹 : 𝐴 ⟶ ω  ∧  𝐹  finSupp  ∅ ) ) ) | 
						
							| 70 | 18 69 | mpbid | ⊢ ( 𝜑  →  ( 𝐹 : 𝐴 ⟶ ω  ∧  𝐹  finSupp  ∅ ) ) | 
						
							| 71 | 70 | simpld | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ω ) | 
						
							| 72 | 68 71 | fssdm | ⊢ ( 𝜑  →  ( 𝐹  supp  ∅ )  ⊆  𝐴 ) | 
						
							| 73 |  | onss | ⊢ ( 𝐴  ∈  On  →  𝐴  ⊆  On ) | 
						
							| 74 | 2 73 | syl | ⊢ ( 𝜑  →  𝐴  ⊆  On ) | 
						
							| 75 | 72 74 | sstrd | ⊢ ( 𝜑  →  ( 𝐹  supp  ∅ )  ⊆  On ) | 
						
							| 76 | 5 | oif | ⊢ 𝐺 : dom  𝐺 ⟶ ( 𝐹  supp  ∅ ) | 
						
							| 77 | 76 | ffvelcdmi | ⊢ ( ∅  ∈  dom  𝐺  →  ( 𝐺 ‘ ∅ )  ∈  ( 𝐹  supp  ∅ ) ) | 
						
							| 78 |  | ssel2 | ⊢ ( ( ( 𝐹  supp  ∅ )  ⊆  On  ∧  ( 𝐺 ‘ ∅ )  ∈  ( 𝐹  supp  ∅ ) )  →  ( 𝐺 ‘ ∅ )  ∈  On ) | 
						
							| 79 | 75 77 78 | syl2an | ⊢ ( ( 𝜑  ∧  ∅  ∈  dom  𝐺 )  →  ( 𝐺 ‘ ∅ )  ∈  On ) | 
						
							| 80 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 81 | 80 | a1i | ⊢ ( ( 𝜑  ∧  ∅  ∈  dom  𝐺 )  →  ∅  ∈  ω ) | 
						
							| 82 |  | oen0 | ⊢ ( ( ( ω  ∈  On  ∧  ( 𝐺 ‘ ∅ )  ∈  On )  ∧  ∅  ∈  ω )  →  ∅  ∈  ( ω  ↑o  ( 𝐺 ‘ ∅ ) ) ) | 
						
							| 83 | 67 79 81 82 | syl21anc | ⊢ ( ( 𝜑  ∧  ∅  ∈  dom  𝐺 )  →  ∅  ∈  ( ω  ↑o  ( 𝐺 ‘ ∅ ) ) ) | 
						
							| 84 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 85 | 7 | seqom0g | ⊢ ( ∅  ∈  V  →  ( 𝑇 ‘ ∅ )  =  ∅ ) | 
						
							| 86 | 84 85 | ax-mp | ⊢ ( 𝑇 ‘ ∅ )  =  ∅ | 
						
							| 87 |  | f1o0 | ⊢ ∅ : ∅ –1-1-onto→ ∅ | 
						
							| 88 | 6 | seqom0g | ⊢ ( ∅  ∈  V  →  ( 𝐻 ‘ ∅ )  =  ∅ ) | 
						
							| 89 |  | f1oeq2 | ⊢ ( ( 𝐻 ‘ ∅ )  =  ∅  →  ( ∅ : ( 𝐻 ‘ ∅ ) –1-1-onto→ ∅  ↔  ∅ : ∅ –1-1-onto→ ∅ ) ) | 
						
							| 90 | 84 88 89 | mp2b | ⊢ ( ∅ : ( 𝐻 ‘ ∅ ) –1-1-onto→ ∅  ↔  ∅ : ∅ –1-1-onto→ ∅ ) | 
						
							| 91 | 87 90 | mpbir | ⊢ ∅ : ( 𝐻 ‘ ∅ ) –1-1-onto→ ∅ | 
						
							| 92 |  | f1oeq1 | ⊢ ( ( 𝑇 ‘ ∅ )  =  ∅  →  ( ( 𝑇 ‘ ∅ ) : ( 𝐻 ‘ ∅ ) –1-1-onto→ ∅  ↔  ∅ : ( 𝐻 ‘ ∅ ) –1-1-onto→ ∅ ) ) | 
						
							| 93 | 91 92 | mpbiri | ⊢ ( ( 𝑇 ‘ ∅ )  =  ∅  →  ( 𝑇 ‘ ∅ ) : ( 𝐻 ‘ ∅ ) –1-1-onto→ ∅ ) | 
						
							| 94 | 86 93 | mp1i | ⊢ ( ( 𝜑  ∧  ∅  ∈  dom  𝐺 )  →  ( 𝑇 ‘ ∅ ) : ( 𝐻 ‘ ∅ ) –1-1-onto→ ∅ ) | 
						
							| 95 | 1 64 65 4 5 6 7 8 9 66 83 94 | cnfcomlem | ⊢ ( ( 𝜑  ∧  ∅  ∈  dom  𝐺 )  →  ( 𝑇 ‘ suc  ∅ ) : ( 𝐻 ‘ suc  ∅ ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ ∅ ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ) | 
						
							| 96 | 95 | ex | ⊢ ( 𝜑  →  ( ∅  ∈  dom  𝐺  →  ( 𝑇 ‘ suc  ∅ ) : ( 𝐻 ‘ suc  ∅ ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ ∅ ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ) ) | 
						
							| 97 | 5 | oicl | ⊢ Ord  dom  𝐺 | 
						
							| 98 |  | ordtr | ⊢ ( Ord  dom  𝐺  →  Tr  dom  𝐺 ) | 
						
							| 99 | 97 98 | ax-mp | ⊢ Tr  dom  𝐺 | 
						
							| 100 |  | trsuc | ⊢ ( ( Tr  dom  𝐺  ∧  suc  𝑦  ∈  dom  𝐺 )  →  𝑦  ∈  dom  𝐺 ) | 
						
							| 101 | 99 100 | mpan | ⊢ ( suc  𝑦  ∈  dom  𝐺  →  𝑦  ∈  dom  𝐺 ) | 
						
							| 102 | 101 | imim1i | ⊢ ( ( 𝑦  ∈  dom  𝐺  →  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) )  →  ( suc  𝑦  ∈  dom  𝐺  →  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) | 
						
							| 103 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  𝐴  ∈  On ) | 
						
							| 104 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  𝐵  ∈  ( ω  ↑o  𝐴 ) ) | 
						
							| 105 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  suc  𝑦  ∈  dom  𝐺 ) | 
						
							| 106 | 74 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  𝐴  ⊆  On ) | 
						
							| 107 | 72 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  ( 𝐹  supp  ∅ )  ⊆  𝐴 ) | 
						
							| 108 | 76 | ffvelcdmi | ⊢ ( suc  𝑦  ∈  dom  𝐺  →  ( 𝐺 ‘ suc  𝑦 )  ∈  ( 𝐹  supp  ∅ ) ) | 
						
							| 109 | 108 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  ( 𝐺 ‘ suc  𝑦 )  ∈  ( 𝐹  supp  ∅ ) ) | 
						
							| 110 | 107 109 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  ( 𝐺 ‘ suc  𝑦 )  ∈  𝐴 ) | 
						
							| 111 | 106 110 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  ( 𝐺 ‘ suc  𝑦 )  ∈  On ) | 
						
							| 112 |  | eloni | ⊢ ( ( 𝐺 ‘ suc  𝑦 )  ∈  On  →  Ord  ( 𝐺 ‘ suc  𝑦 ) ) | 
						
							| 113 | 111 112 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  Ord  ( 𝐺 ‘ suc  𝑦 ) ) | 
						
							| 114 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 115 | 114 | sucid | ⊢ 𝑦  ∈  suc  𝑦 | 
						
							| 116 |  | ovexd | ⊢ ( 𝜑  →  ( 𝐹  supp  ∅ )  ∈  V ) | 
						
							| 117 | 19 | simpld | ⊢ ( 𝜑  →   E   We  ( 𝐹  supp  ∅ ) ) | 
						
							| 118 | 5 | oiiso | ⊢ ( ( ( 𝐹  supp  ∅ )  ∈  V  ∧   E   We  ( 𝐹  supp  ∅ ) )  →  𝐺  Isom   E  ,   E  ( dom  𝐺 ,  ( 𝐹  supp  ∅ ) ) ) | 
						
							| 119 | 116 117 118 | syl2anc | ⊢ ( 𝜑  →  𝐺  Isom   E  ,   E  ( dom  𝐺 ,  ( 𝐹  supp  ∅ ) ) ) | 
						
							| 120 | 119 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  𝐺  Isom   E  ,   E  ( dom  𝐺 ,  ( 𝐹  supp  ∅ ) ) ) | 
						
							| 121 | 101 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  𝑦  ∈  dom  𝐺 ) | 
						
							| 122 |  | isorel | ⊢ ( ( 𝐺  Isom   E  ,   E  ( dom  𝐺 ,  ( 𝐹  supp  ∅ ) )  ∧  ( 𝑦  ∈  dom  𝐺  ∧  suc  𝑦  ∈  dom  𝐺 ) )  →  ( 𝑦  E  suc  𝑦  ↔  ( 𝐺 ‘ 𝑦 )  E  ( 𝐺 ‘ suc  𝑦 ) ) ) | 
						
							| 123 | 120 121 105 122 | syl12anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  ( 𝑦  E  suc  𝑦  ↔  ( 𝐺 ‘ 𝑦 )  E  ( 𝐺 ‘ suc  𝑦 ) ) ) | 
						
							| 124 | 114 | sucex | ⊢ suc  𝑦  ∈  V | 
						
							| 125 | 124 | epeli | ⊢ ( 𝑦  E  suc  𝑦  ↔  𝑦  ∈  suc  𝑦 ) | 
						
							| 126 |  | fvex | ⊢ ( 𝐺 ‘ suc  𝑦 )  ∈  V | 
						
							| 127 | 126 | epeli | ⊢ ( ( 𝐺 ‘ 𝑦 )  E  ( 𝐺 ‘ suc  𝑦 )  ↔  ( 𝐺 ‘ 𝑦 )  ∈  ( 𝐺 ‘ suc  𝑦 ) ) | 
						
							| 128 | 123 125 127 | 3bitr3g | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  ( 𝑦  ∈  suc  𝑦  ↔  ( 𝐺 ‘ 𝑦 )  ∈  ( 𝐺 ‘ suc  𝑦 ) ) ) | 
						
							| 129 | 115 128 | mpbii | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  ( 𝐺 ‘ 𝑦 )  ∈  ( 𝐺 ‘ suc  𝑦 ) ) | 
						
							| 130 |  | ordsucss | ⊢ ( Ord  ( 𝐺 ‘ suc  𝑦 )  →  ( ( 𝐺 ‘ 𝑦 )  ∈  ( 𝐺 ‘ suc  𝑦 )  →  suc  ( 𝐺 ‘ 𝑦 )  ⊆  ( 𝐺 ‘ suc  𝑦 ) ) ) | 
						
							| 131 | 113 129 130 | sylc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  suc  ( 𝐺 ‘ 𝑦 )  ⊆  ( 𝐺 ‘ suc  𝑦 ) ) | 
						
							| 132 | 76 | ffvelcdmi | ⊢ ( 𝑦  ∈  dom  𝐺  →  ( 𝐺 ‘ 𝑦 )  ∈  ( 𝐹  supp  ∅ ) ) | 
						
							| 133 | 121 132 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  ( 𝐺 ‘ 𝑦 )  ∈  ( 𝐹  supp  ∅ ) ) | 
						
							| 134 | 107 133 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  ( 𝐺 ‘ 𝑦 )  ∈  𝐴 ) | 
						
							| 135 | 106 134 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  ( 𝐺 ‘ 𝑦 )  ∈  On ) | 
						
							| 136 |  | onsuc | ⊢ ( ( 𝐺 ‘ 𝑦 )  ∈  On  →  suc  ( 𝐺 ‘ 𝑦 )  ∈  On ) | 
						
							| 137 | 135 136 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  suc  ( 𝐺 ‘ 𝑦 )  ∈  On ) | 
						
							| 138 | 11 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  ω  ∈  On ) | 
						
							| 139 | 80 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  ∅  ∈  ω ) | 
						
							| 140 |  | oewordi | ⊢ ( ( ( suc  ( 𝐺 ‘ 𝑦 )  ∈  On  ∧  ( 𝐺 ‘ suc  𝑦 )  ∈  On  ∧  ω  ∈  On )  ∧  ∅  ∈  ω )  →  ( suc  ( 𝐺 ‘ 𝑦 )  ⊆  ( 𝐺 ‘ suc  𝑦 )  →  ( ω  ↑o  suc  ( 𝐺 ‘ 𝑦 ) )  ⊆  ( ω  ↑o  ( 𝐺 ‘ suc  𝑦 ) ) ) ) | 
						
							| 141 | 137 111 138 139 140 | syl31anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  ( suc  ( 𝐺 ‘ 𝑦 )  ⊆  ( 𝐺 ‘ suc  𝑦 )  →  ( ω  ↑o  suc  ( 𝐺 ‘ 𝑦 ) )  ⊆  ( ω  ↑o  ( 𝐺 ‘ suc  𝑦 ) ) ) ) | 
						
							| 142 | 131 141 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  ( ω  ↑o  suc  ( 𝐺 ‘ 𝑦 ) )  ⊆  ( ω  ↑o  ( 𝐺 ‘ suc  𝑦 ) ) ) | 
						
							| 143 | 71 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  𝐹 : 𝐴 ⟶ ω ) | 
						
							| 144 | 143 134 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) )  ∈  ω ) | 
						
							| 145 |  | nnon | ⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) )  ∈  ω  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) )  ∈  On ) | 
						
							| 146 | 144 145 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) )  ∈  On ) | 
						
							| 147 |  | oecl | ⊢ ( ( ω  ∈  On  ∧  ( 𝐺 ‘ 𝑦 )  ∈  On )  →  ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ∈  On ) | 
						
							| 148 | 138 135 147 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ∈  On ) | 
						
							| 149 |  | oen0 | ⊢ ( ( ( ω  ∈  On  ∧  ( 𝐺 ‘ 𝑦 )  ∈  On )  ∧  ∅  ∈  ω )  →  ∅  ∈  ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 150 | 138 135 139 149 | syl21anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  ∅  ∈  ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 151 |  | omord2 | ⊢ ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) )  ∈  On  ∧  ω  ∈  On  ∧  ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ∈  On )  ∧  ∅  ∈  ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) ) )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) )  ∈  ω  ↔  ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) )  ∈  ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ω ) ) ) | 
						
							| 152 | 146 138 148 150 151 | syl31anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) )  ∈  ω  ↔  ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) )  ∈  ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ω ) ) ) | 
						
							| 153 | 144 152 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) )  ∈  ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ω ) ) | 
						
							| 154 |  | oesuc | ⊢ ( ( ω  ∈  On  ∧  ( 𝐺 ‘ 𝑦 )  ∈  On )  →  ( ω  ↑o  suc  ( 𝐺 ‘ 𝑦 ) )  =  ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ω ) ) | 
						
							| 155 | 138 135 154 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  ( ω  ↑o  suc  ( 𝐺 ‘ 𝑦 ) )  =  ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ω ) ) | 
						
							| 156 | 153 155 | eleqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) )  ∈  ( ω  ↑o  suc  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 157 | 142 156 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) )  ∈  ( ω  ↑o  ( 𝐺 ‘ suc  𝑦 ) ) ) | 
						
							| 158 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) | 
						
							| 159 | 1 103 104 4 5 6 7 8 9 105 157 158 | cnfcomlem | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ω )  ∧  ( suc  𝑦  ∈  dom  𝐺  ∧  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) )  →  ( 𝑇 ‘ suc  suc  𝑦 ) : ( 𝐻 ‘ suc  suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ suc  𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ suc  𝑦 ) ) ) ) | 
						
							| 160 | 159 | exp32 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ω )  →  ( suc  𝑦  ∈  dom  𝐺  →  ( ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) )  →  ( 𝑇 ‘ suc  suc  𝑦 ) : ( 𝐻 ‘ suc  suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ suc  𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ suc  𝑦 ) ) ) ) ) ) | 
						
							| 161 | 160 | a2d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ω )  →  ( ( suc  𝑦  ∈  dom  𝐺  →  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) )  →  ( suc  𝑦  ∈  dom  𝐺  →  ( 𝑇 ‘ suc  suc  𝑦 ) : ( 𝐻 ‘ suc  suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ suc  𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ suc  𝑦 ) ) ) ) ) ) | 
						
							| 162 | 102 161 | syl5 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ω )  →  ( ( 𝑦  ∈  dom  𝐺  →  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) )  →  ( suc  𝑦  ∈  dom  𝐺  →  ( 𝑇 ‘ suc  suc  𝑦 ) : ( 𝐻 ‘ suc  suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ suc  𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ suc  𝑦 ) ) ) ) ) ) | 
						
							| 163 | 162 | expcom | ⊢ ( 𝑦  ∈  ω  →  ( 𝜑  →  ( ( 𝑦  ∈  dom  𝐺  →  ( 𝑇 ‘ suc  𝑦 ) : ( 𝐻 ‘ suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) )  →  ( suc  𝑦  ∈  dom  𝐺  →  ( 𝑇 ‘ suc  suc  𝑦 ) : ( 𝐻 ‘ suc  suc  𝑦 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ suc  𝑦 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ suc  𝑦 ) ) ) ) ) ) ) | 
						
							| 164 | 43 53 63 96 163 | finds2 | ⊢ ( 𝑤  ∈  ω  →  ( 𝜑  →  ( 𝑤  ∈  dom  𝐺  →  ( 𝑇 ‘ suc  𝑤 ) : ( 𝐻 ‘ suc  𝑤 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝑤 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ) ) ) | 
						
							| 165 | 33 164 | vtoclga | ⊢ ( 𝐼  ∈  ω  →  ( 𝜑  →  ( 𝐼  ∈  dom  𝐺  →  ( 𝑇 ‘ suc  𝐼 ) : ( 𝐻 ‘ suc  𝐼 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) ) | 
						
							| 166 | 22 165 | mpcom | ⊢ ( 𝜑  →  ( 𝐼  ∈  dom  𝐺  →  ( 𝑇 ‘ suc  𝐼 ) : ( 𝐻 ‘ suc  𝐼 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) | 
						
							| 167 | 10 166 | mpd | ⊢ ( 𝜑  →  ( 𝑇 ‘ suc  𝐼 ) : ( 𝐻 ‘ suc  𝐼 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) |