Step |
Hyp |
Ref |
Expression |
1 |
|
cnfcom.s |
⊢ 𝑆 = dom ( ω CNF 𝐴 ) |
2 |
|
cnfcom.a |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
3 |
|
cnfcom.b |
⊢ ( 𝜑 → 𝐵 ∈ ( ω ↑o 𝐴 ) ) |
4 |
|
cnfcom.f |
⊢ 𝐹 = ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) |
5 |
|
cnfcom.g |
⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) |
6 |
|
cnfcom.h |
⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) , ∅ ) |
7 |
|
cnfcom.t |
⊢ 𝑇 = seqω ( ( 𝑘 ∈ V , 𝑓 ∈ V ↦ 𝐾 ) , ∅ ) |
8 |
|
cnfcom.m |
⊢ 𝑀 = ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
9 |
|
cnfcom.k |
⊢ 𝐾 = ( ( 𝑥 ∈ 𝑀 ↦ ( dom 𝑓 +o 𝑥 ) ) ∪ ◡ ( 𝑥 ∈ dom 𝑓 ↦ ( 𝑀 +o 𝑥 ) ) ) |
10 |
|
cnfcom.1 |
⊢ ( 𝜑 → 𝐼 ∈ dom 𝐺 ) |
11 |
|
omelon |
⊢ ω ∈ On |
12 |
11
|
a1i |
⊢ ( 𝜑 → ω ∈ On ) |
13 |
1 12 2
|
cantnff1o |
⊢ ( 𝜑 → ( ω CNF 𝐴 ) : 𝑆 –1-1-onto→ ( ω ↑o 𝐴 ) ) |
14 |
|
f1ocnv |
⊢ ( ( ω CNF 𝐴 ) : 𝑆 –1-1-onto→ ( ω ↑o 𝐴 ) → ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) –1-1-onto→ 𝑆 ) |
15 |
|
f1of |
⊢ ( ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) –1-1-onto→ 𝑆 → ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) ⟶ 𝑆 ) |
16 |
13 14 15
|
3syl |
⊢ ( 𝜑 → ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) ⟶ 𝑆 ) |
17 |
16 3
|
ffvelrnd |
⊢ ( 𝜑 → ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) ∈ 𝑆 ) |
18 |
4 17
|
eqeltrid |
⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
19 |
1 12 2 5 18
|
cantnfcl |
⊢ ( 𝜑 → ( E We ( 𝐹 supp ∅ ) ∧ dom 𝐺 ∈ ω ) ) |
20 |
19
|
simprd |
⊢ ( 𝜑 → dom 𝐺 ∈ ω ) |
21 |
|
elnn |
⊢ ( ( 𝐼 ∈ dom 𝐺 ∧ dom 𝐺 ∈ ω ) → 𝐼 ∈ ω ) |
22 |
10 20 21
|
syl2anc |
⊢ ( 𝜑 → 𝐼 ∈ ω ) |
23 |
|
eleq1 |
⊢ ( 𝑤 = 𝐼 → ( 𝑤 ∈ dom 𝐺 ↔ 𝐼 ∈ dom 𝐺 ) ) |
24 |
|
suceq |
⊢ ( 𝑤 = 𝐼 → suc 𝑤 = suc 𝐼 ) |
25 |
24
|
fveq2d |
⊢ ( 𝑤 = 𝐼 → ( 𝑇 ‘ suc 𝑤 ) = ( 𝑇 ‘ suc 𝐼 ) ) |
26 |
24
|
fveq2d |
⊢ ( 𝑤 = 𝐼 → ( 𝐻 ‘ suc 𝑤 ) = ( 𝐻 ‘ suc 𝐼 ) ) |
27 |
|
fveq2 |
⊢ ( 𝑤 = 𝐼 → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ 𝐼 ) ) |
28 |
27
|
oveq2d |
⊢ ( 𝑤 = 𝐼 → ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) = ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ) |
29 |
|
2fveq3 |
⊢ ( 𝑤 = 𝐼 → ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) |
30 |
28 29
|
oveq12d |
⊢ ( 𝑤 = 𝐼 → ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) = ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) |
31 |
25 26 30
|
f1oeq123d |
⊢ ( 𝑤 = 𝐼 → ( ( 𝑇 ‘ suc 𝑤 ) : ( 𝐻 ‘ suc 𝑤 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ↔ ( 𝑇 ‘ suc 𝐼 ) : ( 𝐻 ‘ suc 𝐼 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) |
32 |
23 31
|
imbi12d |
⊢ ( 𝑤 = 𝐼 → ( ( 𝑤 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑤 ) : ( 𝐻 ‘ suc 𝑤 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ) ↔ ( 𝐼 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝐼 ) : ( 𝐻 ‘ suc 𝐼 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) ) |
33 |
32
|
imbi2d |
⊢ ( 𝑤 = 𝐼 → ( ( 𝜑 → ( 𝑤 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑤 ) : ( 𝐻 ‘ suc 𝑤 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ) ) ↔ ( 𝜑 → ( 𝐼 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝐼 ) : ( 𝐻 ‘ suc 𝐼 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) ) ) |
34 |
|
eleq1 |
⊢ ( 𝑤 = ∅ → ( 𝑤 ∈ dom 𝐺 ↔ ∅ ∈ dom 𝐺 ) ) |
35 |
|
suceq |
⊢ ( 𝑤 = ∅ → suc 𝑤 = suc ∅ ) |
36 |
35
|
fveq2d |
⊢ ( 𝑤 = ∅ → ( 𝑇 ‘ suc 𝑤 ) = ( 𝑇 ‘ suc ∅ ) ) |
37 |
35
|
fveq2d |
⊢ ( 𝑤 = ∅ → ( 𝐻 ‘ suc 𝑤 ) = ( 𝐻 ‘ suc ∅ ) ) |
38 |
|
fveq2 |
⊢ ( 𝑤 = ∅ → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ ∅ ) ) |
39 |
38
|
oveq2d |
⊢ ( 𝑤 = ∅ → ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) = ( ω ↑o ( 𝐺 ‘ ∅ ) ) ) |
40 |
|
2fveq3 |
⊢ ( 𝑤 = ∅ → ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) |
41 |
39 40
|
oveq12d |
⊢ ( 𝑤 = ∅ → ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) = ( ( ω ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ) |
42 |
36 37 41
|
f1oeq123d |
⊢ ( 𝑤 = ∅ → ( ( 𝑇 ‘ suc 𝑤 ) : ( 𝐻 ‘ suc 𝑤 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ↔ ( 𝑇 ‘ suc ∅ ) : ( 𝐻 ‘ suc ∅ ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ) ) |
43 |
34 42
|
imbi12d |
⊢ ( 𝑤 = ∅ → ( ( 𝑤 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑤 ) : ( 𝐻 ‘ suc 𝑤 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ) ↔ ( ∅ ∈ dom 𝐺 → ( 𝑇 ‘ suc ∅ ) : ( 𝐻 ‘ suc ∅ ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ) ) ) |
44 |
|
eleq1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ dom 𝐺 ↔ 𝑦 ∈ dom 𝐺 ) ) |
45 |
|
suceq |
⊢ ( 𝑤 = 𝑦 → suc 𝑤 = suc 𝑦 ) |
46 |
45
|
fveq2d |
⊢ ( 𝑤 = 𝑦 → ( 𝑇 ‘ suc 𝑤 ) = ( 𝑇 ‘ suc 𝑦 ) ) |
47 |
45
|
fveq2d |
⊢ ( 𝑤 = 𝑦 → ( 𝐻 ‘ suc 𝑤 ) = ( 𝐻 ‘ suc 𝑦 ) ) |
48 |
|
fveq2 |
⊢ ( 𝑤 = 𝑦 → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑦 ) ) |
49 |
48
|
oveq2d |
⊢ ( 𝑤 = 𝑦 → ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) = ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ) |
50 |
|
2fveq3 |
⊢ ( 𝑤 = 𝑦 → ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) |
51 |
49 50
|
oveq12d |
⊢ ( 𝑤 = 𝑦 → ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) = ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
52 |
46 47 51
|
f1oeq123d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑇 ‘ suc 𝑤 ) : ( 𝐻 ‘ suc 𝑤 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ↔ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) |
53 |
44 52
|
imbi12d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑤 ) : ( 𝐻 ‘ suc 𝑤 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ) ↔ ( 𝑦 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) ) |
54 |
|
eleq1 |
⊢ ( 𝑤 = suc 𝑦 → ( 𝑤 ∈ dom 𝐺 ↔ suc 𝑦 ∈ dom 𝐺 ) ) |
55 |
|
suceq |
⊢ ( 𝑤 = suc 𝑦 → suc 𝑤 = suc suc 𝑦 ) |
56 |
55
|
fveq2d |
⊢ ( 𝑤 = suc 𝑦 → ( 𝑇 ‘ suc 𝑤 ) = ( 𝑇 ‘ suc suc 𝑦 ) ) |
57 |
55
|
fveq2d |
⊢ ( 𝑤 = suc 𝑦 → ( 𝐻 ‘ suc 𝑤 ) = ( 𝐻 ‘ suc suc 𝑦 ) ) |
58 |
|
fveq2 |
⊢ ( 𝑤 = suc 𝑦 → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ suc 𝑦 ) ) |
59 |
58
|
oveq2d |
⊢ ( 𝑤 = suc 𝑦 → ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) = ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) |
60 |
|
2fveq3 |
⊢ ( 𝑤 = suc 𝑦 → ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) |
61 |
59 60
|
oveq12d |
⊢ ( 𝑤 = suc 𝑦 → ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) = ( ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ) |
62 |
56 57 61
|
f1oeq123d |
⊢ ( 𝑤 = suc 𝑦 → ( ( 𝑇 ‘ suc 𝑤 ) : ( 𝐻 ‘ suc 𝑤 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ↔ ( 𝑇 ‘ suc suc 𝑦 ) : ( 𝐻 ‘ suc suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) |
63 |
54 62
|
imbi12d |
⊢ ( 𝑤 = suc 𝑦 → ( ( 𝑤 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑤 ) : ( 𝐻 ‘ suc 𝑤 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ) ↔ ( suc 𝑦 ∈ dom 𝐺 → ( 𝑇 ‘ suc suc 𝑦 ) : ( 𝐻 ‘ suc suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) ) |
64 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → 𝐴 ∈ On ) |
65 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → 𝐵 ∈ ( ω ↑o 𝐴 ) ) |
66 |
|
simpr |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ∅ ∈ dom 𝐺 ) |
67 |
11
|
a1i |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ω ∈ On ) |
68 |
|
suppssdm |
⊢ ( 𝐹 supp ∅ ) ⊆ dom 𝐹 |
69 |
1 12 2
|
cantnfs |
⊢ ( 𝜑 → ( 𝐹 ∈ 𝑆 ↔ ( 𝐹 : 𝐴 ⟶ ω ∧ 𝐹 finSupp ∅ ) ) ) |
70 |
18 69
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ ω ∧ 𝐹 finSupp ∅ ) ) |
71 |
70
|
simpld |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ω ) |
72 |
68 71
|
fssdm |
⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ 𝐴 ) |
73 |
|
onss |
⊢ ( 𝐴 ∈ On → 𝐴 ⊆ On ) |
74 |
2 73
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ On ) |
75 |
72 74
|
sstrd |
⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ On ) |
76 |
5
|
oif |
⊢ 𝐺 : dom 𝐺 ⟶ ( 𝐹 supp ∅ ) |
77 |
76
|
ffvelrni |
⊢ ( ∅ ∈ dom 𝐺 → ( 𝐺 ‘ ∅ ) ∈ ( 𝐹 supp ∅ ) ) |
78 |
|
ssel2 |
⊢ ( ( ( 𝐹 supp ∅ ) ⊆ On ∧ ( 𝐺 ‘ ∅ ) ∈ ( 𝐹 supp ∅ ) ) → ( 𝐺 ‘ ∅ ) ∈ On ) |
79 |
75 77 78
|
syl2an |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝐺 ‘ ∅ ) ∈ On ) |
80 |
|
peano1 |
⊢ ∅ ∈ ω |
81 |
80
|
a1i |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ∅ ∈ ω ) |
82 |
|
oen0 |
⊢ ( ( ( ω ∈ On ∧ ( 𝐺 ‘ ∅ ) ∈ On ) ∧ ∅ ∈ ω ) → ∅ ∈ ( ω ↑o ( 𝐺 ‘ ∅ ) ) ) |
83 |
67 79 81 82
|
syl21anc |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ∅ ∈ ( ω ↑o ( 𝐺 ‘ ∅ ) ) ) |
84 |
|
0ex |
⊢ ∅ ∈ V |
85 |
7
|
seqom0g |
⊢ ( ∅ ∈ V → ( 𝑇 ‘ ∅ ) = ∅ ) |
86 |
84 85
|
ax-mp |
⊢ ( 𝑇 ‘ ∅ ) = ∅ |
87 |
|
f1o0 |
⊢ ∅ : ∅ –1-1-onto→ ∅ |
88 |
6
|
seqom0g |
⊢ ( ∅ ∈ V → ( 𝐻 ‘ ∅ ) = ∅ ) |
89 |
|
f1oeq2 |
⊢ ( ( 𝐻 ‘ ∅ ) = ∅ → ( ∅ : ( 𝐻 ‘ ∅ ) –1-1-onto→ ∅ ↔ ∅ : ∅ –1-1-onto→ ∅ ) ) |
90 |
84 88 89
|
mp2b |
⊢ ( ∅ : ( 𝐻 ‘ ∅ ) –1-1-onto→ ∅ ↔ ∅ : ∅ –1-1-onto→ ∅ ) |
91 |
87 90
|
mpbir |
⊢ ∅ : ( 𝐻 ‘ ∅ ) –1-1-onto→ ∅ |
92 |
|
f1oeq1 |
⊢ ( ( 𝑇 ‘ ∅ ) = ∅ → ( ( 𝑇 ‘ ∅ ) : ( 𝐻 ‘ ∅ ) –1-1-onto→ ∅ ↔ ∅ : ( 𝐻 ‘ ∅ ) –1-1-onto→ ∅ ) ) |
93 |
91 92
|
mpbiri |
⊢ ( ( 𝑇 ‘ ∅ ) = ∅ → ( 𝑇 ‘ ∅ ) : ( 𝐻 ‘ ∅ ) –1-1-onto→ ∅ ) |
94 |
86 93
|
mp1i |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝑇 ‘ ∅ ) : ( 𝐻 ‘ ∅ ) –1-1-onto→ ∅ ) |
95 |
1 64 65 4 5 6 7 8 9 66 83 94
|
cnfcomlem |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝑇 ‘ suc ∅ ) : ( 𝐻 ‘ suc ∅ ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ) |
96 |
95
|
ex |
⊢ ( 𝜑 → ( ∅ ∈ dom 𝐺 → ( 𝑇 ‘ suc ∅ ) : ( 𝐻 ‘ suc ∅ ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ) ) |
97 |
5
|
oicl |
⊢ Ord dom 𝐺 |
98 |
|
ordtr |
⊢ ( Ord dom 𝐺 → Tr dom 𝐺 ) |
99 |
97 98
|
ax-mp |
⊢ Tr dom 𝐺 |
100 |
|
trsuc |
⊢ ( ( Tr dom 𝐺 ∧ suc 𝑦 ∈ dom 𝐺 ) → 𝑦 ∈ dom 𝐺 ) |
101 |
99 100
|
mpan |
⊢ ( suc 𝑦 ∈ dom 𝐺 → 𝑦 ∈ dom 𝐺 ) |
102 |
101
|
imim1i |
⊢ ( ( 𝑦 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) → ( suc 𝑦 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) |
103 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → 𝐴 ∈ On ) |
104 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → 𝐵 ∈ ( ω ↑o 𝐴 ) ) |
105 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → suc 𝑦 ∈ dom 𝐺 ) |
106 |
74
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → 𝐴 ⊆ On ) |
107 |
72
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝐹 supp ∅ ) ⊆ 𝐴 ) |
108 |
76
|
ffvelrni |
⊢ ( suc 𝑦 ∈ dom 𝐺 → ( 𝐺 ‘ suc 𝑦 ) ∈ ( 𝐹 supp ∅ ) ) |
109 |
108
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝐺 ‘ suc 𝑦 ) ∈ ( 𝐹 supp ∅ ) ) |
110 |
107 109
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝐺 ‘ suc 𝑦 ) ∈ 𝐴 ) |
111 |
106 110
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝐺 ‘ suc 𝑦 ) ∈ On ) |
112 |
|
eloni |
⊢ ( ( 𝐺 ‘ suc 𝑦 ) ∈ On → Ord ( 𝐺 ‘ suc 𝑦 ) ) |
113 |
111 112
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → Ord ( 𝐺 ‘ suc 𝑦 ) ) |
114 |
|
vex |
⊢ 𝑦 ∈ V |
115 |
114
|
sucid |
⊢ 𝑦 ∈ suc 𝑦 |
116 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ∈ V ) |
117 |
19
|
simpld |
⊢ ( 𝜑 → E We ( 𝐹 supp ∅ ) ) |
118 |
5
|
oiiso |
⊢ ( ( ( 𝐹 supp ∅ ) ∈ V ∧ E We ( 𝐹 supp ∅ ) ) → 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ) |
119 |
116 117 118
|
syl2anc |
⊢ ( 𝜑 → 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ) |
120 |
119
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ) |
121 |
101
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → 𝑦 ∈ dom 𝐺 ) |
122 |
|
isorel |
⊢ ( ( 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ∧ ( 𝑦 ∈ dom 𝐺 ∧ suc 𝑦 ∈ dom 𝐺 ) ) → ( 𝑦 E suc 𝑦 ↔ ( 𝐺 ‘ 𝑦 ) E ( 𝐺 ‘ suc 𝑦 ) ) ) |
123 |
120 121 105 122
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝑦 E suc 𝑦 ↔ ( 𝐺 ‘ 𝑦 ) E ( 𝐺 ‘ suc 𝑦 ) ) ) |
124 |
114
|
sucex |
⊢ suc 𝑦 ∈ V |
125 |
124
|
epeli |
⊢ ( 𝑦 E suc 𝑦 ↔ 𝑦 ∈ suc 𝑦 ) |
126 |
|
fvex |
⊢ ( 𝐺 ‘ suc 𝑦 ) ∈ V |
127 |
126
|
epeli |
⊢ ( ( 𝐺 ‘ 𝑦 ) E ( 𝐺 ‘ suc 𝑦 ) ↔ ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐺 ‘ suc 𝑦 ) ) |
128 |
123 125 127
|
3bitr3g |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝑦 ∈ suc 𝑦 ↔ ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐺 ‘ suc 𝑦 ) ) ) |
129 |
115 128
|
mpbii |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐺 ‘ suc 𝑦 ) ) |
130 |
|
ordsucss |
⊢ ( Ord ( 𝐺 ‘ suc 𝑦 ) → ( ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐺 ‘ suc 𝑦 ) → suc ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) ) |
131 |
113 129 130
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → suc ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) |
132 |
76
|
ffvelrni |
⊢ ( 𝑦 ∈ dom 𝐺 → ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐹 supp ∅ ) ) |
133 |
121 132
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐹 supp ∅ ) ) |
134 |
107 133
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) |
135 |
106 134
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ On ) |
136 |
|
suceloni |
⊢ ( ( 𝐺 ‘ 𝑦 ) ∈ On → suc ( 𝐺 ‘ 𝑦 ) ∈ On ) |
137 |
135 136
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → suc ( 𝐺 ‘ 𝑦 ) ∈ On ) |
138 |
11
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ω ∈ On ) |
139 |
80
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ∅ ∈ ω ) |
140 |
|
oewordi |
⊢ ( ( ( suc ( 𝐺 ‘ 𝑦 ) ∈ On ∧ ( 𝐺 ‘ suc 𝑦 ) ∈ On ∧ ω ∈ On ) ∧ ∅ ∈ ω ) → ( suc ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) → ( ω ↑o suc ( 𝐺 ‘ 𝑦 ) ) ⊆ ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) ) |
141 |
137 111 138 139 140
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( suc ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) → ( ω ↑o suc ( 𝐺 ‘ 𝑦 ) ) ⊆ ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) ) |
142 |
131 141
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( ω ↑o suc ( 𝐺 ‘ 𝑦 ) ) ⊆ ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) |
143 |
71
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → 𝐹 : 𝐴 ⟶ ω ) |
144 |
143 134
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ ω ) |
145 |
|
nnon |
⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ ω → ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ On ) |
146 |
144 145
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ On ) |
147 |
|
oecl |
⊢ ( ( ω ∈ On ∧ ( 𝐺 ‘ 𝑦 ) ∈ On ) → ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ∈ On ) |
148 |
138 135 147
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ∈ On ) |
149 |
|
oen0 |
⊢ ( ( ( ω ∈ On ∧ ( 𝐺 ‘ 𝑦 ) ∈ On ) ∧ ∅ ∈ ω ) → ∅ ∈ ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ) |
150 |
138 135 139 149
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ∅ ∈ ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ) |
151 |
|
omord2 |
⊢ ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ On ∧ ω ∈ On ∧ ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ∈ On ) ∧ ∅ ∈ ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ ω ↔ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ∈ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ω ) ) ) |
152 |
146 138 148 150 151
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ ω ↔ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ∈ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ω ) ) ) |
153 |
144 152
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ∈ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ω ) ) |
154 |
|
oesuc |
⊢ ( ( ω ∈ On ∧ ( 𝐺 ‘ 𝑦 ) ∈ On ) → ( ω ↑o suc ( 𝐺 ‘ 𝑦 ) ) = ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ω ) ) |
155 |
138 135 154
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( ω ↑o suc ( 𝐺 ‘ 𝑦 ) ) = ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ω ) ) |
156 |
153 155
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ∈ ( ω ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) |
157 |
142 156
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ∈ ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) |
158 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
159 |
1 103 104 4 5 6 7 8 9 105 157 158
|
cnfcomlem |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝑇 ‘ suc suc 𝑦 ) : ( 𝐻 ‘ suc suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ) |
160 |
159
|
exp32 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → ( suc 𝑦 ∈ dom 𝐺 → ( ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝑇 ‘ suc suc 𝑦 ) : ( 𝐻 ‘ suc suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) ) |
161 |
160
|
a2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → ( ( suc 𝑦 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) → ( suc 𝑦 ∈ dom 𝐺 → ( 𝑇 ‘ suc suc 𝑦 ) : ( 𝐻 ‘ suc suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) ) |
162 |
102 161
|
syl5 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → ( ( 𝑦 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) → ( suc 𝑦 ∈ dom 𝐺 → ( 𝑇 ‘ suc suc 𝑦 ) : ( 𝐻 ‘ suc suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) ) |
163 |
162
|
expcom |
⊢ ( 𝑦 ∈ ω → ( 𝜑 → ( ( 𝑦 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) → ( suc 𝑦 ∈ dom 𝐺 → ( 𝑇 ‘ suc suc 𝑦 ) : ( 𝐻 ‘ suc suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) ) ) |
164 |
43 53 63 96 163
|
finds2 |
⊢ ( 𝑤 ∈ ω → ( 𝜑 → ( 𝑤 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑤 ) : ( 𝐻 ‘ suc 𝑤 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ) ) ) |
165 |
33 164
|
vtoclga |
⊢ ( 𝐼 ∈ ω → ( 𝜑 → ( 𝐼 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝐼 ) : ( 𝐻 ‘ suc 𝐼 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) ) |
166 |
22 165
|
mpcom |
⊢ ( 𝜑 → ( 𝐼 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝐼 ) : ( 𝐻 ‘ suc 𝐼 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) |
167 |
10 166
|
mpd |
⊢ ( 𝜑 → ( 𝑇 ‘ suc 𝐼 ) : ( 𝐻 ‘ suc 𝐼 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) |