Step |
Hyp |
Ref |
Expression |
1 |
|
cnfcom.s |
⊢ 𝑆 = dom ( ω CNF 𝐴 ) |
2 |
|
cnfcom.a |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
3 |
|
cnfcom.b |
⊢ ( 𝜑 → 𝐵 ∈ ( ω ↑o 𝐴 ) ) |
4 |
|
cnfcom.f |
⊢ 𝐹 = ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) |
5 |
|
cnfcom.g |
⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) |
6 |
|
cnfcom.h |
⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) , ∅ ) |
7 |
|
cnfcom.t |
⊢ 𝑇 = seqω ( ( 𝑘 ∈ V , 𝑓 ∈ V ↦ 𝐾 ) , ∅ ) |
8 |
|
cnfcom.m |
⊢ 𝑀 = ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
9 |
|
cnfcom.k |
⊢ 𝐾 = ( ( 𝑥 ∈ 𝑀 ↦ ( dom 𝑓 +o 𝑥 ) ) ∪ ◡ ( 𝑥 ∈ dom 𝑓 ↦ ( 𝑀 +o 𝑥 ) ) ) |
10 |
|
cnfcom.w |
⊢ 𝑊 = ( 𝐺 ‘ ∪ dom 𝐺 ) |
11 |
|
cnfcom2.1 |
⊢ ( 𝜑 → ∅ ∈ 𝐵 ) |
12 |
|
ovex |
⊢ ( 𝐹 supp ∅ ) ∈ V |
13 |
5
|
oion |
⊢ ( ( 𝐹 supp ∅ ) ∈ V → dom 𝐺 ∈ On ) |
14 |
12 13
|
ax-mp |
⊢ dom 𝐺 ∈ On |
15 |
14
|
elexi |
⊢ dom 𝐺 ∈ V |
16 |
15
|
uniex |
⊢ ∪ dom 𝐺 ∈ V |
17 |
16
|
sucid |
⊢ ∪ dom 𝐺 ∈ suc ∪ dom 𝐺 |
18 |
1 2 3 4 5 6 7 8 9 10 11
|
cnfcom2lem |
⊢ ( 𝜑 → dom 𝐺 = suc ∪ dom 𝐺 ) |
19 |
17 18
|
eleqtrrid |
⊢ ( 𝜑 → ∪ dom 𝐺 ∈ dom 𝐺 ) |
20 |
1 2 3 4 5 6 7 8 9 19
|
cnfcom |
⊢ ( 𝜑 → ( 𝑇 ‘ suc ∪ dom 𝐺 ) : ( 𝐻 ‘ suc ∪ dom 𝐺 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ ∪ dom 𝐺 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∪ dom 𝐺 ) ) ) ) |
21 |
10
|
oveq2i |
⊢ ( ω ↑o 𝑊 ) = ( ω ↑o ( 𝐺 ‘ ∪ dom 𝐺 ) ) |
22 |
10
|
fveq2i |
⊢ ( 𝐹 ‘ 𝑊 ) = ( 𝐹 ‘ ( 𝐺 ‘ ∪ dom 𝐺 ) ) |
23 |
21 22
|
oveq12i |
⊢ ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) = ( ( ω ↑o ( 𝐺 ‘ ∪ dom 𝐺 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∪ dom 𝐺 ) ) ) |
24 |
|
f1oeq3 |
⊢ ( ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) = ( ( ω ↑o ( 𝐺 ‘ ∪ dom 𝐺 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∪ dom 𝐺 ) ) ) → ( ( 𝑇 ‘ suc ∪ dom 𝐺 ) : ( 𝐻 ‘ suc ∪ dom 𝐺 ) –1-1-onto→ ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) ↔ ( 𝑇 ‘ suc ∪ dom 𝐺 ) : ( 𝐻 ‘ suc ∪ dom 𝐺 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ ∪ dom 𝐺 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∪ dom 𝐺 ) ) ) ) ) |
25 |
23 24
|
ax-mp |
⊢ ( ( 𝑇 ‘ suc ∪ dom 𝐺 ) : ( 𝐻 ‘ suc ∪ dom 𝐺 ) –1-1-onto→ ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) ↔ ( 𝑇 ‘ suc ∪ dom 𝐺 ) : ( 𝐻 ‘ suc ∪ dom 𝐺 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ ∪ dom 𝐺 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∪ dom 𝐺 ) ) ) ) |
26 |
20 25
|
sylibr |
⊢ ( 𝜑 → ( 𝑇 ‘ suc ∪ dom 𝐺 ) : ( 𝐻 ‘ suc ∪ dom 𝐺 ) –1-1-onto→ ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) ) |
27 |
18
|
fveq2d |
⊢ ( 𝜑 → ( 𝑇 ‘ dom 𝐺 ) = ( 𝑇 ‘ suc ∪ dom 𝐺 ) ) |
28 |
27
|
f1oeq1d |
⊢ ( 𝜑 → ( ( 𝑇 ‘ dom 𝐺 ) : ( 𝐻 ‘ suc ∪ dom 𝐺 ) –1-1-onto→ ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) ↔ ( 𝑇 ‘ suc ∪ dom 𝐺 ) : ( 𝐻 ‘ suc ∪ dom 𝐺 ) –1-1-onto→ ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) ) ) |
29 |
26 28
|
mpbird |
⊢ ( 𝜑 → ( 𝑇 ‘ dom 𝐺 ) : ( 𝐻 ‘ suc ∪ dom 𝐺 ) –1-1-onto→ ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) ) |
30 |
|
omelon |
⊢ ω ∈ On |
31 |
30
|
a1i |
⊢ ( 𝜑 → ω ∈ On ) |
32 |
1 31 2
|
cantnff1o |
⊢ ( 𝜑 → ( ω CNF 𝐴 ) : 𝑆 –1-1-onto→ ( ω ↑o 𝐴 ) ) |
33 |
|
f1ocnv |
⊢ ( ( ω CNF 𝐴 ) : 𝑆 –1-1-onto→ ( ω ↑o 𝐴 ) → ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) –1-1-onto→ 𝑆 ) |
34 |
|
f1of |
⊢ ( ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) –1-1-onto→ 𝑆 → ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) ⟶ 𝑆 ) |
35 |
32 33 34
|
3syl |
⊢ ( 𝜑 → ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) ⟶ 𝑆 ) |
36 |
35 3
|
ffvelrnd |
⊢ ( 𝜑 → ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) ∈ 𝑆 ) |
37 |
4 36
|
eqeltrid |
⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
38 |
8
|
oveq1i |
⊢ ( 𝑀 +o 𝑧 ) = ( ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) |
39 |
38
|
a1i |
⊢ ( ( 𝑘 ∈ V ∧ 𝑧 ∈ V ) → ( 𝑀 +o 𝑧 ) = ( ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) |
40 |
39
|
mpoeq3ia |
⊢ ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) = ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) |
41 |
|
eqid |
⊢ ∅ = ∅ |
42 |
|
seqomeq12 |
⊢ ( ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) = ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ∧ ∅ = ∅ ) → seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ) |
43 |
40 41 42
|
mp2an |
⊢ seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) |
44 |
6 43
|
eqtri |
⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) |
45 |
1 31 2 5 37 44
|
cantnfval |
⊢ ( 𝜑 → ( ( ω CNF 𝐴 ) ‘ 𝐹 ) = ( 𝐻 ‘ dom 𝐺 ) ) |
46 |
4
|
fveq2i |
⊢ ( ( ω CNF 𝐴 ) ‘ 𝐹 ) = ( ( ω CNF 𝐴 ) ‘ ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) ) |
47 |
45 46
|
eqtr3di |
⊢ ( 𝜑 → ( 𝐻 ‘ dom 𝐺 ) = ( ( ω CNF 𝐴 ) ‘ ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) ) ) |
48 |
18
|
fveq2d |
⊢ ( 𝜑 → ( 𝐻 ‘ dom 𝐺 ) = ( 𝐻 ‘ suc ∪ dom 𝐺 ) ) |
49 |
|
f1ocnvfv2 |
⊢ ( ( ( ω CNF 𝐴 ) : 𝑆 –1-1-onto→ ( ω ↑o 𝐴 ) ∧ 𝐵 ∈ ( ω ↑o 𝐴 ) ) → ( ( ω CNF 𝐴 ) ‘ ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) ) = 𝐵 ) |
50 |
32 3 49
|
syl2anc |
⊢ ( 𝜑 → ( ( ω CNF 𝐴 ) ‘ ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) ) = 𝐵 ) |
51 |
47 48 50
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐻 ‘ suc ∪ dom 𝐺 ) = 𝐵 ) |
52 |
51
|
f1oeq2d |
⊢ ( 𝜑 → ( ( 𝑇 ‘ dom 𝐺 ) : ( 𝐻 ‘ suc ∪ dom 𝐺 ) –1-1-onto→ ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) ↔ ( 𝑇 ‘ dom 𝐺 ) : 𝐵 –1-1-onto→ ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) ) ) |
53 |
29 52
|
mpbid |
⊢ ( 𝜑 → ( 𝑇 ‘ dom 𝐺 ) : 𝐵 –1-1-onto→ ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) ) |