| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnfcom.s | ⊢ 𝑆  =  dom  ( ω  CNF  𝐴 ) | 
						
							| 2 |  | cnfcom.a | ⊢ ( 𝜑  →  𝐴  ∈  On ) | 
						
							| 3 |  | cnfcom.b | ⊢ ( 𝜑  →  𝐵  ∈  ( ω  ↑o  𝐴 ) ) | 
						
							| 4 |  | cnfcom.f | ⊢ 𝐹  =  ( ◡ ( ω  CNF  𝐴 ) ‘ 𝐵 ) | 
						
							| 5 |  | cnfcom.g | ⊢ 𝐺  =  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) | 
						
							| 6 |  | cnfcom.h | ⊢ 𝐻  =  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( 𝑀  +o  𝑧 ) ) ,  ∅ ) | 
						
							| 7 |  | cnfcom.t | ⊢ 𝑇  =  seqω ( ( 𝑘  ∈  V ,  𝑓  ∈  V  ↦  𝐾 ) ,  ∅ ) | 
						
							| 8 |  | cnfcom.m | ⊢ 𝑀  =  ( ( ω  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 9 |  | cnfcom.k | ⊢ 𝐾  =  ( ( 𝑥  ∈  𝑀  ↦  ( dom  𝑓  +o  𝑥 ) )  ∪  ◡ ( 𝑥  ∈  dom  𝑓  ↦  ( 𝑀  +o  𝑥 ) ) ) | 
						
							| 10 |  | cnfcom.w | ⊢ 𝑊  =  ( 𝐺 ‘ ∪  dom  𝐺 ) | 
						
							| 11 |  | cnfcom2.1 | ⊢ ( 𝜑  →  ∅  ∈  𝐵 ) | 
						
							| 12 |  | ovex | ⊢ ( 𝐹  supp  ∅ )  ∈  V | 
						
							| 13 | 5 | oion | ⊢ ( ( 𝐹  supp  ∅ )  ∈  V  →  dom  𝐺  ∈  On ) | 
						
							| 14 | 12 13 | ax-mp | ⊢ dom  𝐺  ∈  On | 
						
							| 15 | 14 | elexi | ⊢ dom  𝐺  ∈  V | 
						
							| 16 | 15 | uniex | ⊢ ∪  dom  𝐺  ∈  V | 
						
							| 17 | 16 | sucid | ⊢ ∪  dom  𝐺  ∈  suc  ∪  dom  𝐺 | 
						
							| 18 | 1 2 3 4 5 6 7 8 9 10 11 | cnfcom2lem | ⊢ ( 𝜑  →  dom  𝐺  =  suc  ∪  dom  𝐺 ) | 
						
							| 19 | 17 18 | eleqtrrid | ⊢ ( 𝜑  →  ∪  dom  𝐺  ∈  dom  𝐺 ) | 
						
							| 20 | 1 2 3 4 5 6 7 8 9 19 | cnfcom | ⊢ ( 𝜑  →  ( 𝑇 ‘ suc  ∪  dom  𝐺 ) : ( 𝐻 ‘ suc  ∪  dom  𝐺 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ ∪  dom  𝐺 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ ∪  dom  𝐺 ) ) ) ) | 
						
							| 21 | 10 | oveq2i | ⊢ ( ω  ↑o  𝑊 )  =  ( ω  ↑o  ( 𝐺 ‘ ∪  dom  𝐺 ) ) | 
						
							| 22 | 10 | fveq2i | ⊢ ( 𝐹 ‘ 𝑊 )  =  ( 𝐹 ‘ ( 𝐺 ‘ ∪  dom  𝐺 ) ) | 
						
							| 23 | 21 22 | oveq12i | ⊢ ( ( ω  ↑o  𝑊 )  ·o  ( 𝐹 ‘ 𝑊 ) )  =  ( ( ω  ↑o  ( 𝐺 ‘ ∪  dom  𝐺 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ ∪  dom  𝐺 ) ) ) | 
						
							| 24 |  | f1oeq3 | ⊢ ( ( ( ω  ↑o  𝑊 )  ·o  ( 𝐹 ‘ 𝑊 ) )  =  ( ( ω  ↑o  ( 𝐺 ‘ ∪  dom  𝐺 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ ∪  dom  𝐺 ) ) )  →  ( ( 𝑇 ‘ suc  ∪  dom  𝐺 ) : ( 𝐻 ‘ suc  ∪  dom  𝐺 ) –1-1-onto→ ( ( ω  ↑o  𝑊 )  ·o  ( 𝐹 ‘ 𝑊 ) )  ↔  ( 𝑇 ‘ suc  ∪  dom  𝐺 ) : ( 𝐻 ‘ suc  ∪  dom  𝐺 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ ∪  dom  𝐺 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ ∪  dom  𝐺 ) ) ) ) ) | 
						
							| 25 | 23 24 | ax-mp | ⊢ ( ( 𝑇 ‘ suc  ∪  dom  𝐺 ) : ( 𝐻 ‘ suc  ∪  dom  𝐺 ) –1-1-onto→ ( ( ω  ↑o  𝑊 )  ·o  ( 𝐹 ‘ 𝑊 ) )  ↔  ( 𝑇 ‘ suc  ∪  dom  𝐺 ) : ( 𝐻 ‘ suc  ∪  dom  𝐺 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ ∪  dom  𝐺 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ ∪  dom  𝐺 ) ) ) ) | 
						
							| 26 | 20 25 | sylibr | ⊢ ( 𝜑  →  ( 𝑇 ‘ suc  ∪  dom  𝐺 ) : ( 𝐻 ‘ suc  ∪  dom  𝐺 ) –1-1-onto→ ( ( ω  ↑o  𝑊 )  ·o  ( 𝐹 ‘ 𝑊 ) ) ) | 
						
							| 27 | 18 | fveq2d | ⊢ ( 𝜑  →  ( 𝑇 ‘ dom  𝐺 )  =  ( 𝑇 ‘ suc  ∪  dom  𝐺 ) ) | 
						
							| 28 | 27 | f1oeq1d | ⊢ ( 𝜑  →  ( ( 𝑇 ‘ dom  𝐺 ) : ( 𝐻 ‘ suc  ∪  dom  𝐺 ) –1-1-onto→ ( ( ω  ↑o  𝑊 )  ·o  ( 𝐹 ‘ 𝑊 ) )  ↔  ( 𝑇 ‘ suc  ∪  dom  𝐺 ) : ( 𝐻 ‘ suc  ∪  dom  𝐺 ) –1-1-onto→ ( ( ω  ↑o  𝑊 )  ·o  ( 𝐹 ‘ 𝑊 ) ) ) ) | 
						
							| 29 | 26 28 | mpbird | ⊢ ( 𝜑  →  ( 𝑇 ‘ dom  𝐺 ) : ( 𝐻 ‘ suc  ∪  dom  𝐺 ) –1-1-onto→ ( ( ω  ↑o  𝑊 )  ·o  ( 𝐹 ‘ 𝑊 ) ) ) | 
						
							| 30 |  | omelon | ⊢ ω  ∈  On | 
						
							| 31 | 30 | a1i | ⊢ ( 𝜑  →  ω  ∈  On ) | 
						
							| 32 | 1 31 2 | cantnff1o | ⊢ ( 𝜑  →  ( ω  CNF  𝐴 ) : 𝑆 –1-1-onto→ ( ω  ↑o  𝐴 ) ) | 
						
							| 33 |  | f1ocnv | ⊢ ( ( ω  CNF  𝐴 ) : 𝑆 –1-1-onto→ ( ω  ↑o  𝐴 )  →  ◡ ( ω  CNF  𝐴 ) : ( ω  ↑o  𝐴 ) –1-1-onto→ 𝑆 ) | 
						
							| 34 |  | f1of | ⊢ ( ◡ ( ω  CNF  𝐴 ) : ( ω  ↑o  𝐴 ) –1-1-onto→ 𝑆  →  ◡ ( ω  CNF  𝐴 ) : ( ω  ↑o  𝐴 ) ⟶ 𝑆 ) | 
						
							| 35 | 32 33 34 | 3syl | ⊢ ( 𝜑  →  ◡ ( ω  CNF  𝐴 ) : ( ω  ↑o  𝐴 ) ⟶ 𝑆 ) | 
						
							| 36 | 35 3 | ffvelcdmd | ⊢ ( 𝜑  →  ( ◡ ( ω  CNF  𝐴 ) ‘ 𝐵 )  ∈  𝑆 ) | 
						
							| 37 | 4 36 | eqeltrid | ⊢ ( 𝜑  →  𝐹  ∈  𝑆 ) | 
						
							| 38 | 8 | oveq1i | ⊢ ( 𝑀  +o  𝑧 )  =  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) | 
						
							| 39 | 38 | a1i | ⊢ ( ( 𝑘  ∈  V  ∧  𝑧  ∈  V )  →  ( 𝑀  +o  𝑧 )  =  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) | 
						
							| 40 | 39 | mpoeq3ia | ⊢ ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( 𝑀  +o  𝑧 ) )  =  ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) | 
						
							| 41 |  | eqid | ⊢ ∅  =  ∅ | 
						
							| 42 |  | seqomeq12 | ⊢ ( ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( 𝑀  +o  𝑧 ) )  =  ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) )  ∧  ∅  =  ∅ )  →  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( 𝑀  +o  𝑧 ) ) ,  ∅ )  =  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ) | 
						
							| 43 | 40 41 42 | mp2an | ⊢ seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( 𝑀  +o  𝑧 ) ) ,  ∅ )  =  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) | 
						
							| 44 | 6 43 | eqtri | ⊢ 𝐻  =  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) | 
						
							| 45 | 1 31 2 5 37 44 | cantnfval | ⊢ ( 𝜑  →  ( ( ω  CNF  𝐴 ) ‘ 𝐹 )  =  ( 𝐻 ‘ dom  𝐺 ) ) | 
						
							| 46 | 4 | fveq2i | ⊢ ( ( ω  CNF  𝐴 ) ‘ 𝐹 )  =  ( ( ω  CNF  𝐴 ) ‘ ( ◡ ( ω  CNF  𝐴 ) ‘ 𝐵 ) ) | 
						
							| 47 | 45 46 | eqtr3di | ⊢ ( 𝜑  →  ( 𝐻 ‘ dom  𝐺 )  =  ( ( ω  CNF  𝐴 ) ‘ ( ◡ ( ω  CNF  𝐴 ) ‘ 𝐵 ) ) ) | 
						
							| 48 | 18 | fveq2d | ⊢ ( 𝜑  →  ( 𝐻 ‘ dom  𝐺 )  =  ( 𝐻 ‘ suc  ∪  dom  𝐺 ) ) | 
						
							| 49 |  | f1ocnvfv2 | ⊢ ( ( ( ω  CNF  𝐴 ) : 𝑆 –1-1-onto→ ( ω  ↑o  𝐴 )  ∧  𝐵  ∈  ( ω  ↑o  𝐴 ) )  →  ( ( ω  CNF  𝐴 ) ‘ ( ◡ ( ω  CNF  𝐴 ) ‘ 𝐵 ) )  =  𝐵 ) | 
						
							| 50 | 32 3 49 | syl2anc | ⊢ ( 𝜑  →  ( ( ω  CNF  𝐴 ) ‘ ( ◡ ( ω  CNF  𝐴 ) ‘ 𝐵 ) )  =  𝐵 ) | 
						
							| 51 | 47 48 50 | 3eqtr3d | ⊢ ( 𝜑  →  ( 𝐻 ‘ suc  ∪  dom  𝐺 )  =  𝐵 ) | 
						
							| 52 | 51 | f1oeq2d | ⊢ ( 𝜑  →  ( ( 𝑇 ‘ dom  𝐺 ) : ( 𝐻 ‘ suc  ∪  dom  𝐺 ) –1-1-onto→ ( ( ω  ↑o  𝑊 )  ·o  ( 𝐹 ‘ 𝑊 ) )  ↔  ( 𝑇 ‘ dom  𝐺 ) : 𝐵 –1-1-onto→ ( ( ω  ↑o  𝑊 )  ·o  ( 𝐹 ‘ 𝑊 ) ) ) ) | 
						
							| 53 | 29 52 | mpbid | ⊢ ( 𝜑  →  ( 𝑇 ‘ dom  𝐺 ) : 𝐵 –1-1-onto→ ( ( ω  ↑o  𝑊 )  ·o  ( 𝐹 ‘ 𝑊 ) ) ) |