| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnfcom.s | ⊢ 𝑆  =  dom  ( ω  CNF  𝐴 ) | 
						
							| 2 |  | cnfcom.a | ⊢ ( 𝜑  →  𝐴  ∈  On ) | 
						
							| 3 |  | cnfcom.b | ⊢ ( 𝜑  →  𝐵  ∈  ( ω  ↑o  𝐴 ) ) | 
						
							| 4 |  | cnfcom.f | ⊢ 𝐹  =  ( ◡ ( ω  CNF  𝐴 ) ‘ 𝐵 ) | 
						
							| 5 |  | cnfcom.g | ⊢ 𝐺  =  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) | 
						
							| 6 |  | cnfcom.h | ⊢ 𝐻  =  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( 𝑀  +o  𝑧 ) ) ,  ∅ ) | 
						
							| 7 |  | cnfcom.t | ⊢ 𝑇  =  seqω ( ( 𝑘  ∈  V ,  𝑓  ∈  V  ↦  𝐾 ) ,  ∅ ) | 
						
							| 8 |  | cnfcom.m | ⊢ 𝑀  =  ( ( ω  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 9 |  | cnfcom.k | ⊢ 𝐾  =  ( ( 𝑥  ∈  𝑀  ↦  ( dom  𝑓  +o  𝑥 ) )  ∪  ◡ ( 𝑥  ∈  dom  𝑓  ↦  ( 𝑀  +o  𝑥 ) ) ) | 
						
							| 10 |  | cnfcom.w | ⊢ 𝑊  =  ( 𝐺 ‘ ∪  dom  𝐺 ) | 
						
							| 11 |  | cnfcom2.1 | ⊢ ( 𝜑  →  ∅  ∈  𝐵 ) | 
						
							| 12 |  | n0i | ⊢ ( ∅  ∈  𝐵  →  ¬  𝐵  =  ∅ ) | 
						
							| 13 | 11 12 | syl | ⊢ ( 𝜑  →  ¬  𝐵  =  ∅ ) | 
						
							| 14 |  | omelon | ⊢ ω  ∈  On | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →  ω  ∈  On ) | 
						
							| 16 | 1 15 2 | cantnff1o | ⊢ ( 𝜑  →  ( ω  CNF  𝐴 ) : 𝑆 –1-1-onto→ ( ω  ↑o  𝐴 ) ) | 
						
							| 17 |  | f1ocnv | ⊢ ( ( ω  CNF  𝐴 ) : 𝑆 –1-1-onto→ ( ω  ↑o  𝐴 )  →  ◡ ( ω  CNF  𝐴 ) : ( ω  ↑o  𝐴 ) –1-1-onto→ 𝑆 ) | 
						
							| 18 |  | f1of | ⊢ ( ◡ ( ω  CNF  𝐴 ) : ( ω  ↑o  𝐴 ) –1-1-onto→ 𝑆  →  ◡ ( ω  CNF  𝐴 ) : ( ω  ↑o  𝐴 ) ⟶ 𝑆 ) | 
						
							| 19 | 16 17 18 | 3syl | ⊢ ( 𝜑  →  ◡ ( ω  CNF  𝐴 ) : ( ω  ↑o  𝐴 ) ⟶ 𝑆 ) | 
						
							| 20 | 19 3 | ffvelcdmd | ⊢ ( 𝜑  →  ( ◡ ( ω  CNF  𝐴 ) ‘ 𝐵 )  ∈  𝑆 ) | 
						
							| 21 | 4 20 | eqeltrid | ⊢ ( 𝜑  →  𝐹  ∈  𝑆 ) | 
						
							| 22 | 1 15 2 | cantnfs | ⊢ ( 𝜑  →  ( 𝐹  ∈  𝑆  ↔  ( 𝐹 : 𝐴 ⟶ ω  ∧  𝐹  finSupp  ∅ ) ) ) | 
						
							| 23 | 21 22 | mpbid | ⊢ ( 𝜑  →  ( 𝐹 : 𝐴 ⟶ ω  ∧  𝐹  finSupp  ∅ ) ) | 
						
							| 24 | 23 | simpld | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ω ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 𝜑  ∧  dom  𝐺  =  ∅ )  →  𝐹 : 𝐴 ⟶ ω ) | 
						
							| 26 | 25 | feqmptd | ⊢ ( ( 𝜑  ∧  dom  𝐺  =  ∅ )  →  𝐹  =  ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 27 |  | dif0 | ⊢ ( 𝐴  ∖  ∅ )  =  𝐴 | 
						
							| 28 | 27 | eleq2i | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  ∅ )  ↔  𝑥  ∈  𝐴 ) | 
						
							| 29 |  | simpr | ⊢ ( ( 𝜑  ∧  dom  𝐺  =  ∅ )  →  dom  𝐺  =  ∅ ) | 
						
							| 30 |  | ovexd | ⊢ ( 𝜑  →  ( 𝐹  supp  ∅ )  ∈  V ) | 
						
							| 31 | 1 15 2 5 21 | cantnfcl | ⊢ ( 𝜑  →  (  E   We  ( 𝐹  supp  ∅ )  ∧  dom  𝐺  ∈  ω ) ) | 
						
							| 32 | 31 | simpld | ⊢ ( 𝜑  →   E   We  ( 𝐹  supp  ∅ ) ) | 
						
							| 33 | 5 | oien | ⊢ ( ( ( 𝐹  supp  ∅ )  ∈  V  ∧   E   We  ( 𝐹  supp  ∅ ) )  →  dom  𝐺  ≈  ( 𝐹  supp  ∅ ) ) | 
						
							| 34 | 30 32 33 | syl2anc | ⊢ ( 𝜑  →  dom  𝐺  ≈  ( 𝐹  supp  ∅ ) ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( 𝜑  ∧  dom  𝐺  =  ∅ )  →  dom  𝐺  ≈  ( 𝐹  supp  ∅ ) ) | 
						
							| 36 | 29 35 | eqbrtrrd | ⊢ ( ( 𝜑  ∧  dom  𝐺  =  ∅ )  →  ∅  ≈  ( 𝐹  supp  ∅ ) ) | 
						
							| 37 | 36 | ensymd | ⊢ ( ( 𝜑  ∧  dom  𝐺  =  ∅ )  →  ( 𝐹  supp  ∅ )  ≈  ∅ ) | 
						
							| 38 |  | en0 | ⊢ ( ( 𝐹  supp  ∅ )  ≈  ∅  ↔  ( 𝐹  supp  ∅ )  =  ∅ ) | 
						
							| 39 | 37 38 | sylib | ⊢ ( ( 𝜑  ∧  dom  𝐺  =  ∅ )  →  ( 𝐹  supp  ∅ )  =  ∅ ) | 
						
							| 40 |  | ss0b | ⊢ ( ( 𝐹  supp  ∅ )  ⊆  ∅  ↔  ( 𝐹  supp  ∅ )  =  ∅ ) | 
						
							| 41 | 39 40 | sylibr | ⊢ ( ( 𝜑  ∧  dom  𝐺  =  ∅ )  →  ( 𝐹  supp  ∅ )  ⊆  ∅ ) | 
						
							| 42 | 2 | adantr | ⊢ ( ( 𝜑  ∧  dom  𝐺  =  ∅ )  →  𝐴  ∈  On ) | 
						
							| 43 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 44 | 43 | a1i | ⊢ ( ( 𝜑  ∧  dom  𝐺  =  ∅ )  →  ∅  ∈  V ) | 
						
							| 45 | 25 41 42 44 | suppssr | ⊢ ( ( ( 𝜑  ∧  dom  𝐺  =  ∅ )  ∧  𝑥  ∈  ( 𝐴  ∖  ∅ ) )  →  ( 𝐹 ‘ 𝑥 )  =  ∅ ) | 
						
							| 46 | 28 45 | sylan2br | ⊢ ( ( ( 𝜑  ∧  dom  𝐺  =  ∅ )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  =  ∅ ) | 
						
							| 47 | 46 | mpteq2dva | ⊢ ( ( 𝜑  ∧  dom  𝐺  =  ∅ )  →  ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑥 ) )  =  ( 𝑥  ∈  𝐴  ↦  ∅ ) ) | 
						
							| 48 | 26 47 | eqtrd | ⊢ ( ( 𝜑  ∧  dom  𝐺  =  ∅ )  →  𝐹  =  ( 𝑥  ∈  𝐴  ↦  ∅ ) ) | 
						
							| 49 |  | fconstmpt | ⊢ ( 𝐴  ×  { ∅ } )  =  ( 𝑥  ∈  𝐴  ↦  ∅ ) | 
						
							| 50 | 48 49 | eqtr4di | ⊢ ( ( 𝜑  ∧  dom  𝐺  =  ∅ )  →  𝐹  =  ( 𝐴  ×  { ∅ } ) ) | 
						
							| 51 | 50 | fveq2d | ⊢ ( ( 𝜑  ∧  dom  𝐺  =  ∅ )  →  ( ( ω  CNF  𝐴 ) ‘ 𝐹 )  =  ( ( ω  CNF  𝐴 ) ‘ ( 𝐴  ×  { ∅ } ) ) ) | 
						
							| 52 | 4 | fveq2i | ⊢ ( ( ω  CNF  𝐴 ) ‘ 𝐹 )  =  ( ( ω  CNF  𝐴 ) ‘ ( ◡ ( ω  CNF  𝐴 ) ‘ 𝐵 ) ) | 
						
							| 53 |  | f1ocnvfv2 | ⊢ ( ( ( ω  CNF  𝐴 ) : 𝑆 –1-1-onto→ ( ω  ↑o  𝐴 )  ∧  𝐵  ∈  ( ω  ↑o  𝐴 ) )  →  ( ( ω  CNF  𝐴 ) ‘ ( ◡ ( ω  CNF  𝐴 ) ‘ 𝐵 ) )  =  𝐵 ) | 
						
							| 54 | 16 3 53 | syl2anc | ⊢ ( 𝜑  →  ( ( ω  CNF  𝐴 ) ‘ ( ◡ ( ω  CNF  𝐴 ) ‘ 𝐵 ) )  =  𝐵 ) | 
						
							| 55 | 52 54 | eqtrid | ⊢ ( 𝜑  →  ( ( ω  CNF  𝐴 ) ‘ 𝐹 )  =  𝐵 ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( 𝜑  ∧  dom  𝐺  =  ∅ )  →  ( ( ω  CNF  𝐴 ) ‘ 𝐹 )  =  𝐵 ) | 
						
							| 57 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 58 | 57 | a1i | ⊢ ( 𝜑  →  ∅  ∈  ω ) | 
						
							| 59 | 1 15 2 58 | cantnf0 | ⊢ ( 𝜑  →  ( ( ω  CNF  𝐴 ) ‘ ( 𝐴  ×  { ∅ } ) )  =  ∅ ) | 
						
							| 60 | 59 | adantr | ⊢ ( ( 𝜑  ∧  dom  𝐺  =  ∅ )  →  ( ( ω  CNF  𝐴 ) ‘ ( 𝐴  ×  { ∅ } ) )  =  ∅ ) | 
						
							| 61 | 51 56 60 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  dom  𝐺  =  ∅ )  →  𝐵  =  ∅ ) | 
						
							| 62 | 13 61 | mtand | ⊢ ( 𝜑  →  ¬  dom  𝐺  =  ∅ ) | 
						
							| 63 |  | nnlim | ⊢ ( dom  𝐺  ∈  ω  →  ¬  Lim  dom  𝐺 ) | 
						
							| 64 | 31 63 | simpl2im | ⊢ ( 𝜑  →  ¬  Lim  dom  𝐺 ) | 
						
							| 65 |  | ioran | ⊢ ( ¬  ( dom  𝐺  =  ∅  ∨  Lim  dom  𝐺 )  ↔  ( ¬  dom  𝐺  =  ∅  ∧  ¬  Lim  dom  𝐺 ) ) | 
						
							| 66 | 62 64 65 | sylanbrc | ⊢ ( 𝜑  →  ¬  ( dom  𝐺  =  ∅  ∨  Lim  dom  𝐺 ) ) | 
						
							| 67 | 5 | oicl | ⊢ Ord  dom  𝐺 | 
						
							| 68 |  | unizlim | ⊢ ( Ord  dom  𝐺  →  ( dom  𝐺  =  ∪  dom  𝐺  ↔  ( dom  𝐺  =  ∅  ∨  Lim  dom  𝐺 ) ) ) | 
						
							| 69 | 67 68 | ax-mp | ⊢ ( dom  𝐺  =  ∪  dom  𝐺  ↔  ( dom  𝐺  =  ∅  ∨  Lim  dom  𝐺 ) ) | 
						
							| 70 | 66 69 | sylnibr | ⊢ ( 𝜑  →  ¬  dom  𝐺  =  ∪  dom  𝐺 ) | 
						
							| 71 |  | orduniorsuc | ⊢ ( Ord  dom  𝐺  →  ( dom  𝐺  =  ∪  dom  𝐺  ∨  dom  𝐺  =  suc  ∪  dom  𝐺 ) ) | 
						
							| 72 | 67 71 | mp1i | ⊢ ( 𝜑  →  ( dom  𝐺  =  ∪  dom  𝐺  ∨  dom  𝐺  =  suc  ∪  dom  𝐺 ) ) | 
						
							| 73 | 72 | ord | ⊢ ( 𝜑  →  ( ¬  dom  𝐺  =  ∪  dom  𝐺  →  dom  𝐺  =  suc  ∪  dom  𝐺 ) ) | 
						
							| 74 | 70 73 | mpd | ⊢ ( 𝜑  →  dom  𝐺  =  suc  ∪  dom  𝐺 ) |