Step |
Hyp |
Ref |
Expression |
1 |
|
cnfcom.s |
⊢ 𝑆 = dom ( ω CNF 𝐴 ) |
2 |
|
cnfcom.a |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
3 |
|
cnfcom.b |
⊢ ( 𝜑 → 𝐵 ∈ ( ω ↑o 𝐴 ) ) |
4 |
|
cnfcom.f |
⊢ 𝐹 = ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) |
5 |
|
cnfcom.g |
⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) |
6 |
|
cnfcom.h |
⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) , ∅ ) |
7 |
|
cnfcom.t |
⊢ 𝑇 = seqω ( ( 𝑘 ∈ V , 𝑓 ∈ V ↦ 𝐾 ) , ∅ ) |
8 |
|
cnfcom.m |
⊢ 𝑀 = ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
9 |
|
cnfcom.k |
⊢ 𝐾 = ( ( 𝑥 ∈ 𝑀 ↦ ( dom 𝑓 +o 𝑥 ) ) ∪ ◡ ( 𝑥 ∈ dom 𝑓 ↦ ( 𝑀 +o 𝑥 ) ) ) |
10 |
|
cnfcom.w |
⊢ 𝑊 = ( 𝐺 ‘ ∪ dom 𝐺 ) |
11 |
|
cnfcom3.1 |
⊢ ( 𝜑 → ω ⊆ 𝐵 ) |
12 |
|
cnfcom.x |
⊢ 𝑋 = ( 𝑢 ∈ ( 𝐹 ‘ 𝑊 ) , 𝑣 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( 𝐹 ‘ 𝑊 ) ·o 𝑣 ) +o 𝑢 ) ) |
13 |
|
cnfcom.y |
⊢ 𝑌 = ( 𝑢 ∈ ( 𝐹 ‘ 𝑊 ) , 𝑣 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( ω ↑o 𝑊 ) ·o 𝑢 ) +o 𝑣 ) ) |
14 |
|
cnfcom.n |
⊢ 𝑁 = ( ( 𝑋 ∘ ◡ 𝑌 ) ∘ ( 𝑇 ‘ dom 𝐺 ) ) |
15 |
|
omelon |
⊢ ω ∈ On |
16 |
|
suppssdm |
⊢ ( 𝐹 supp ∅ ) ⊆ dom 𝐹 |
17 |
15
|
a1i |
⊢ ( 𝜑 → ω ∈ On ) |
18 |
1 17 2
|
cantnff1o |
⊢ ( 𝜑 → ( ω CNF 𝐴 ) : 𝑆 –1-1-onto→ ( ω ↑o 𝐴 ) ) |
19 |
|
f1ocnv |
⊢ ( ( ω CNF 𝐴 ) : 𝑆 –1-1-onto→ ( ω ↑o 𝐴 ) → ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) –1-1-onto→ 𝑆 ) |
20 |
|
f1of |
⊢ ( ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) –1-1-onto→ 𝑆 → ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) ⟶ 𝑆 ) |
21 |
18 19 20
|
3syl |
⊢ ( 𝜑 → ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) ⟶ 𝑆 ) |
22 |
21 3
|
ffvelrnd |
⊢ ( 𝜑 → ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) ∈ 𝑆 ) |
23 |
4 22
|
eqeltrid |
⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
24 |
1 17 2
|
cantnfs |
⊢ ( 𝜑 → ( 𝐹 ∈ 𝑆 ↔ ( 𝐹 : 𝐴 ⟶ ω ∧ 𝐹 finSupp ∅ ) ) ) |
25 |
23 24
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ ω ∧ 𝐹 finSupp ∅ ) ) |
26 |
25
|
simpld |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ω ) |
27 |
16 26
|
fssdm |
⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ 𝐴 ) |
28 |
|
ovex |
⊢ ( 𝐹 supp ∅ ) ∈ V |
29 |
5
|
oion |
⊢ ( ( 𝐹 supp ∅ ) ∈ V → dom 𝐺 ∈ On ) |
30 |
28 29
|
ax-mp |
⊢ dom 𝐺 ∈ On |
31 |
30
|
elexi |
⊢ dom 𝐺 ∈ V |
32 |
31
|
uniex |
⊢ ∪ dom 𝐺 ∈ V |
33 |
32
|
sucid |
⊢ ∪ dom 𝐺 ∈ suc ∪ dom 𝐺 |
34 |
|
peano1 |
⊢ ∅ ∈ ω |
35 |
34
|
a1i |
⊢ ( 𝜑 → ∅ ∈ ω ) |
36 |
11 35
|
sseldd |
⊢ ( 𝜑 → ∅ ∈ 𝐵 ) |
37 |
1 2 3 4 5 6 7 8 9 10 36
|
cnfcom2lem |
⊢ ( 𝜑 → dom 𝐺 = suc ∪ dom 𝐺 ) |
38 |
33 37
|
eleqtrrid |
⊢ ( 𝜑 → ∪ dom 𝐺 ∈ dom 𝐺 ) |
39 |
5
|
oif |
⊢ 𝐺 : dom 𝐺 ⟶ ( 𝐹 supp ∅ ) |
40 |
39
|
ffvelrni |
⊢ ( ∪ dom 𝐺 ∈ dom 𝐺 → ( 𝐺 ‘ ∪ dom 𝐺 ) ∈ ( 𝐹 supp ∅ ) ) |
41 |
38 40
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ ∪ dom 𝐺 ) ∈ ( 𝐹 supp ∅ ) ) |
42 |
10 41
|
eqeltrid |
⊢ ( 𝜑 → 𝑊 ∈ ( 𝐹 supp ∅ ) ) |
43 |
27 42
|
sseldd |
⊢ ( 𝜑 → 𝑊 ∈ 𝐴 ) |
44 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ 𝑊 ∈ 𝐴 ) → 𝑊 ∈ On ) |
45 |
2 43 44
|
syl2anc |
⊢ ( 𝜑 → 𝑊 ∈ On ) |
46 |
|
oecl |
⊢ ( ( ω ∈ On ∧ 𝑊 ∈ On ) → ( ω ↑o 𝑊 ) ∈ On ) |
47 |
15 45 46
|
sylancr |
⊢ ( 𝜑 → ( ω ↑o 𝑊 ) ∈ On ) |
48 |
26 43
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑊 ) ∈ ω ) |
49 |
|
nnon |
⊢ ( ( 𝐹 ‘ 𝑊 ) ∈ ω → ( 𝐹 ‘ 𝑊 ) ∈ On ) |
50 |
48 49
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑊 ) ∈ On ) |
51 |
13 12
|
omf1o |
⊢ ( ( ( ω ↑o 𝑊 ) ∈ On ∧ ( 𝐹 ‘ 𝑊 ) ∈ On ) → ( 𝑋 ∘ ◡ 𝑌 ) : ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) –1-1-onto→ ( ( 𝐹 ‘ 𝑊 ) ·o ( ω ↑o 𝑊 ) ) ) |
52 |
47 50 51
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ∘ ◡ 𝑌 ) : ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) –1-1-onto→ ( ( 𝐹 ‘ 𝑊 ) ·o ( ω ↑o 𝑊 ) ) ) |
53 |
26
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
54 |
|
0ex |
⊢ ∅ ∈ V |
55 |
54
|
a1i |
⊢ ( 𝜑 → ∅ ∈ V ) |
56 |
|
elsuppfn |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ On ∧ ∅ ∈ V ) → ( 𝑊 ∈ ( 𝐹 supp ∅ ) ↔ ( 𝑊 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑊 ) ≠ ∅ ) ) ) |
57 |
53 2 55 56
|
syl3anc |
⊢ ( 𝜑 → ( 𝑊 ∈ ( 𝐹 supp ∅ ) ↔ ( 𝑊 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑊 ) ≠ ∅ ) ) ) |
58 |
|
simpr |
⊢ ( ( 𝑊 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑊 ) ≠ ∅ ) → ( 𝐹 ‘ 𝑊 ) ≠ ∅ ) |
59 |
57 58
|
syl6bi |
⊢ ( 𝜑 → ( 𝑊 ∈ ( 𝐹 supp ∅ ) → ( 𝐹 ‘ 𝑊 ) ≠ ∅ ) ) |
60 |
42 59
|
mpd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑊 ) ≠ ∅ ) |
61 |
|
on0eln0 |
⊢ ( ( 𝐹 ‘ 𝑊 ) ∈ On → ( ∅ ∈ ( 𝐹 ‘ 𝑊 ) ↔ ( 𝐹 ‘ 𝑊 ) ≠ ∅ ) ) |
62 |
48 49 61
|
3syl |
⊢ ( 𝜑 → ( ∅ ∈ ( 𝐹 ‘ 𝑊 ) ↔ ( 𝐹 ‘ 𝑊 ) ≠ ∅ ) ) |
63 |
60 62
|
mpbird |
⊢ ( 𝜑 → ∅ ∈ ( 𝐹 ‘ 𝑊 ) ) |
64 |
1 2 3 4 5 6 7 8 9 10 11
|
cnfcom3lem |
⊢ ( 𝜑 → 𝑊 ∈ ( On ∖ 1o ) ) |
65 |
|
ondif1 |
⊢ ( 𝑊 ∈ ( On ∖ 1o ) ↔ ( 𝑊 ∈ On ∧ ∅ ∈ 𝑊 ) ) |
66 |
65
|
simprbi |
⊢ ( 𝑊 ∈ ( On ∖ 1o ) → ∅ ∈ 𝑊 ) |
67 |
64 66
|
syl |
⊢ ( 𝜑 → ∅ ∈ 𝑊 ) |
68 |
|
omabs |
⊢ ( ( ( ( 𝐹 ‘ 𝑊 ) ∈ ω ∧ ∅ ∈ ( 𝐹 ‘ 𝑊 ) ) ∧ ( 𝑊 ∈ On ∧ ∅ ∈ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑊 ) ·o ( ω ↑o 𝑊 ) ) = ( ω ↑o 𝑊 ) ) |
69 |
48 63 45 67 68
|
syl22anc |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑊 ) ·o ( ω ↑o 𝑊 ) ) = ( ω ↑o 𝑊 ) ) |
70 |
69
|
f1oeq3d |
⊢ ( 𝜑 → ( ( 𝑋 ∘ ◡ 𝑌 ) : ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) –1-1-onto→ ( ( 𝐹 ‘ 𝑊 ) ·o ( ω ↑o 𝑊 ) ) ↔ ( 𝑋 ∘ ◡ 𝑌 ) : ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) –1-1-onto→ ( ω ↑o 𝑊 ) ) ) |
71 |
52 70
|
mpbid |
⊢ ( 𝜑 → ( 𝑋 ∘ ◡ 𝑌 ) : ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) –1-1-onto→ ( ω ↑o 𝑊 ) ) |
72 |
1 2 3 4 5 6 7 8 9 10 36
|
cnfcom2 |
⊢ ( 𝜑 → ( 𝑇 ‘ dom 𝐺 ) : 𝐵 –1-1-onto→ ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) ) |
73 |
|
f1oco |
⊢ ( ( ( 𝑋 ∘ ◡ 𝑌 ) : ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) –1-1-onto→ ( ω ↑o 𝑊 ) ∧ ( 𝑇 ‘ dom 𝐺 ) : 𝐵 –1-1-onto→ ( ( ω ↑o 𝑊 ) ·o ( 𝐹 ‘ 𝑊 ) ) ) → ( ( 𝑋 ∘ ◡ 𝑌 ) ∘ ( 𝑇 ‘ dom 𝐺 ) ) : 𝐵 –1-1-onto→ ( ω ↑o 𝑊 ) ) |
74 |
71 72 73
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑋 ∘ ◡ 𝑌 ) ∘ ( 𝑇 ‘ dom 𝐺 ) ) : 𝐵 –1-1-onto→ ( ω ↑o 𝑊 ) ) |
75 |
|
f1oeq1 |
⊢ ( 𝑁 = ( ( 𝑋 ∘ ◡ 𝑌 ) ∘ ( 𝑇 ‘ dom 𝐺 ) ) → ( 𝑁 : 𝐵 –1-1-onto→ ( ω ↑o 𝑊 ) ↔ ( ( 𝑋 ∘ ◡ 𝑌 ) ∘ ( 𝑇 ‘ dom 𝐺 ) ) : 𝐵 –1-1-onto→ ( ω ↑o 𝑊 ) ) ) |
76 |
14 75
|
ax-mp |
⊢ ( 𝑁 : 𝐵 –1-1-onto→ ( ω ↑o 𝑊 ) ↔ ( ( 𝑋 ∘ ◡ 𝑌 ) ∘ ( 𝑇 ‘ dom 𝐺 ) ) : 𝐵 –1-1-onto→ ( ω ↑o 𝑊 ) ) |
77 |
74 76
|
sylibr |
⊢ ( 𝜑 → 𝑁 : 𝐵 –1-1-onto→ ( ω ↑o 𝑊 ) ) |