| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnfcom.s | ⊢ 𝑆  =  dom  ( ω  CNF  𝐴 ) | 
						
							| 2 |  | cnfcom.a | ⊢ ( 𝜑  →  𝐴  ∈  On ) | 
						
							| 3 |  | cnfcom.b | ⊢ ( 𝜑  →  𝐵  ∈  ( ω  ↑o  𝐴 ) ) | 
						
							| 4 |  | cnfcom.f | ⊢ 𝐹  =  ( ◡ ( ω  CNF  𝐴 ) ‘ 𝐵 ) | 
						
							| 5 |  | cnfcom.g | ⊢ 𝐺  =  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) | 
						
							| 6 |  | cnfcom.h | ⊢ 𝐻  =  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( 𝑀  +o  𝑧 ) ) ,  ∅ ) | 
						
							| 7 |  | cnfcom.t | ⊢ 𝑇  =  seqω ( ( 𝑘  ∈  V ,  𝑓  ∈  V  ↦  𝐾 ) ,  ∅ ) | 
						
							| 8 |  | cnfcom.m | ⊢ 𝑀  =  ( ( ω  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 9 |  | cnfcom.k | ⊢ 𝐾  =  ( ( 𝑥  ∈  𝑀  ↦  ( dom  𝑓  +o  𝑥 ) )  ∪  ◡ ( 𝑥  ∈  dom  𝑓  ↦  ( 𝑀  +o  𝑥 ) ) ) | 
						
							| 10 |  | cnfcom.w | ⊢ 𝑊  =  ( 𝐺 ‘ ∪  dom  𝐺 ) | 
						
							| 11 |  | cnfcom3.1 | ⊢ ( 𝜑  →  ω  ⊆  𝐵 ) | 
						
							| 12 |  | cnfcom.x | ⊢ 𝑋  =  ( 𝑢  ∈  ( 𝐹 ‘ 𝑊 ) ,  𝑣  ∈  ( ω  ↑o  𝑊 )  ↦  ( ( ( 𝐹 ‘ 𝑊 )  ·o  𝑣 )  +o  𝑢 ) ) | 
						
							| 13 |  | cnfcom.y | ⊢ 𝑌  =  ( 𝑢  ∈  ( 𝐹 ‘ 𝑊 ) ,  𝑣  ∈  ( ω  ↑o  𝑊 )  ↦  ( ( ( ω  ↑o  𝑊 )  ·o  𝑢 )  +o  𝑣 ) ) | 
						
							| 14 |  | cnfcom.n | ⊢ 𝑁  =  ( ( 𝑋  ∘  ◡ 𝑌 )  ∘  ( 𝑇 ‘ dom  𝐺 ) ) | 
						
							| 15 |  | omelon | ⊢ ω  ∈  On | 
						
							| 16 |  | suppssdm | ⊢ ( 𝐹  supp  ∅ )  ⊆  dom  𝐹 | 
						
							| 17 | 15 | a1i | ⊢ ( 𝜑  →  ω  ∈  On ) | 
						
							| 18 | 1 17 2 | cantnff1o | ⊢ ( 𝜑  →  ( ω  CNF  𝐴 ) : 𝑆 –1-1-onto→ ( ω  ↑o  𝐴 ) ) | 
						
							| 19 |  | f1ocnv | ⊢ ( ( ω  CNF  𝐴 ) : 𝑆 –1-1-onto→ ( ω  ↑o  𝐴 )  →  ◡ ( ω  CNF  𝐴 ) : ( ω  ↑o  𝐴 ) –1-1-onto→ 𝑆 ) | 
						
							| 20 |  | f1of | ⊢ ( ◡ ( ω  CNF  𝐴 ) : ( ω  ↑o  𝐴 ) –1-1-onto→ 𝑆  →  ◡ ( ω  CNF  𝐴 ) : ( ω  ↑o  𝐴 ) ⟶ 𝑆 ) | 
						
							| 21 | 18 19 20 | 3syl | ⊢ ( 𝜑  →  ◡ ( ω  CNF  𝐴 ) : ( ω  ↑o  𝐴 ) ⟶ 𝑆 ) | 
						
							| 22 | 21 3 | ffvelcdmd | ⊢ ( 𝜑  →  ( ◡ ( ω  CNF  𝐴 ) ‘ 𝐵 )  ∈  𝑆 ) | 
						
							| 23 | 4 22 | eqeltrid | ⊢ ( 𝜑  →  𝐹  ∈  𝑆 ) | 
						
							| 24 | 1 17 2 | cantnfs | ⊢ ( 𝜑  →  ( 𝐹  ∈  𝑆  ↔  ( 𝐹 : 𝐴 ⟶ ω  ∧  𝐹  finSupp  ∅ ) ) ) | 
						
							| 25 | 23 24 | mpbid | ⊢ ( 𝜑  →  ( 𝐹 : 𝐴 ⟶ ω  ∧  𝐹  finSupp  ∅ ) ) | 
						
							| 26 | 25 | simpld | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ω ) | 
						
							| 27 | 16 26 | fssdm | ⊢ ( 𝜑  →  ( 𝐹  supp  ∅ )  ⊆  𝐴 ) | 
						
							| 28 |  | ovex | ⊢ ( 𝐹  supp  ∅ )  ∈  V | 
						
							| 29 | 5 | oion | ⊢ ( ( 𝐹  supp  ∅ )  ∈  V  →  dom  𝐺  ∈  On ) | 
						
							| 30 | 28 29 | ax-mp | ⊢ dom  𝐺  ∈  On | 
						
							| 31 | 30 | elexi | ⊢ dom  𝐺  ∈  V | 
						
							| 32 | 31 | uniex | ⊢ ∪  dom  𝐺  ∈  V | 
						
							| 33 | 32 | sucid | ⊢ ∪  dom  𝐺  ∈  suc  ∪  dom  𝐺 | 
						
							| 34 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 35 | 34 | a1i | ⊢ ( 𝜑  →  ∅  ∈  ω ) | 
						
							| 36 | 11 35 | sseldd | ⊢ ( 𝜑  →  ∅  ∈  𝐵 ) | 
						
							| 37 | 1 2 3 4 5 6 7 8 9 10 36 | cnfcom2lem | ⊢ ( 𝜑  →  dom  𝐺  =  suc  ∪  dom  𝐺 ) | 
						
							| 38 | 33 37 | eleqtrrid | ⊢ ( 𝜑  →  ∪  dom  𝐺  ∈  dom  𝐺 ) | 
						
							| 39 | 5 | oif | ⊢ 𝐺 : dom  𝐺 ⟶ ( 𝐹  supp  ∅ ) | 
						
							| 40 | 39 | ffvelcdmi | ⊢ ( ∪  dom  𝐺  ∈  dom  𝐺  →  ( 𝐺 ‘ ∪  dom  𝐺 )  ∈  ( 𝐹  supp  ∅ ) ) | 
						
							| 41 | 38 40 | syl | ⊢ ( 𝜑  →  ( 𝐺 ‘ ∪  dom  𝐺 )  ∈  ( 𝐹  supp  ∅ ) ) | 
						
							| 42 | 10 41 | eqeltrid | ⊢ ( 𝜑  →  𝑊  ∈  ( 𝐹  supp  ∅ ) ) | 
						
							| 43 | 27 42 | sseldd | ⊢ ( 𝜑  →  𝑊  ∈  𝐴 ) | 
						
							| 44 |  | onelon | ⊢ ( ( 𝐴  ∈  On  ∧  𝑊  ∈  𝐴 )  →  𝑊  ∈  On ) | 
						
							| 45 | 2 43 44 | syl2anc | ⊢ ( 𝜑  →  𝑊  ∈  On ) | 
						
							| 46 |  | oecl | ⊢ ( ( ω  ∈  On  ∧  𝑊  ∈  On )  →  ( ω  ↑o  𝑊 )  ∈  On ) | 
						
							| 47 | 15 45 46 | sylancr | ⊢ ( 𝜑  →  ( ω  ↑o  𝑊 )  ∈  On ) | 
						
							| 48 | 26 43 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑊 )  ∈  ω ) | 
						
							| 49 |  | nnon | ⊢ ( ( 𝐹 ‘ 𝑊 )  ∈  ω  →  ( 𝐹 ‘ 𝑊 )  ∈  On ) | 
						
							| 50 | 48 49 | syl | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑊 )  ∈  On ) | 
						
							| 51 | 13 12 | omf1o | ⊢ ( ( ( ω  ↑o  𝑊 )  ∈  On  ∧  ( 𝐹 ‘ 𝑊 )  ∈  On )  →  ( 𝑋  ∘  ◡ 𝑌 ) : ( ( ω  ↑o  𝑊 )  ·o  ( 𝐹 ‘ 𝑊 ) ) –1-1-onto→ ( ( 𝐹 ‘ 𝑊 )  ·o  ( ω  ↑o  𝑊 ) ) ) | 
						
							| 52 | 47 50 51 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋  ∘  ◡ 𝑌 ) : ( ( ω  ↑o  𝑊 )  ·o  ( 𝐹 ‘ 𝑊 ) ) –1-1-onto→ ( ( 𝐹 ‘ 𝑊 )  ·o  ( ω  ↑o  𝑊 ) ) ) | 
						
							| 53 | 26 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝐴 ) | 
						
							| 54 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 55 | 54 | a1i | ⊢ ( 𝜑  →  ∅  ∈  V ) | 
						
							| 56 |  | elsuppfn | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐴  ∈  On  ∧  ∅  ∈  V )  →  ( 𝑊  ∈  ( 𝐹  supp  ∅ )  ↔  ( 𝑊  ∈  𝐴  ∧  ( 𝐹 ‘ 𝑊 )  ≠  ∅ ) ) ) | 
						
							| 57 | 53 2 55 56 | syl3anc | ⊢ ( 𝜑  →  ( 𝑊  ∈  ( 𝐹  supp  ∅ )  ↔  ( 𝑊  ∈  𝐴  ∧  ( 𝐹 ‘ 𝑊 )  ≠  ∅ ) ) ) | 
						
							| 58 |  | simpr | ⊢ ( ( 𝑊  ∈  𝐴  ∧  ( 𝐹 ‘ 𝑊 )  ≠  ∅ )  →  ( 𝐹 ‘ 𝑊 )  ≠  ∅ ) | 
						
							| 59 | 57 58 | biimtrdi | ⊢ ( 𝜑  →  ( 𝑊  ∈  ( 𝐹  supp  ∅ )  →  ( 𝐹 ‘ 𝑊 )  ≠  ∅ ) ) | 
						
							| 60 | 42 59 | mpd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑊 )  ≠  ∅ ) | 
						
							| 61 |  | on0eln0 | ⊢ ( ( 𝐹 ‘ 𝑊 )  ∈  On  →  ( ∅  ∈  ( 𝐹 ‘ 𝑊 )  ↔  ( 𝐹 ‘ 𝑊 )  ≠  ∅ ) ) | 
						
							| 62 | 48 49 61 | 3syl | ⊢ ( 𝜑  →  ( ∅  ∈  ( 𝐹 ‘ 𝑊 )  ↔  ( 𝐹 ‘ 𝑊 )  ≠  ∅ ) ) | 
						
							| 63 | 60 62 | mpbird | ⊢ ( 𝜑  →  ∅  ∈  ( 𝐹 ‘ 𝑊 ) ) | 
						
							| 64 | 1 2 3 4 5 6 7 8 9 10 11 | cnfcom3lem | ⊢ ( 𝜑  →  𝑊  ∈  ( On  ∖  1o ) ) | 
						
							| 65 |  | ondif1 | ⊢ ( 𝑊  ∈  ( On  ∖  1o )  ↔  ( 𝑊  ∈  On  ∧  ∅  ∈  𝑊 ) ) | 
						
							| 66 | 65 | simprbi | ⊢ ( 𝑊  ∈  ( On  ∖  1o )  →  ∅  ∈  𝑊 ) | 
						
							| 67 | 64 66 | syl | ⊢ ( 𝜑  →  ∅  ∈  𝑊 ) | 
						
							| 68 |  | omabs | ⊢ ( ( ( ( 𝐹 ‘ 𝑊 )  ∈  ω  ∧  ∅  ∈  ( 𝐹 ‘ 𝑊 ) )  ∧  ( 𝑊  ∈  On  ∧  ∅  ∈  𝑊 ) )  →  ( ( 𝐹 ‘ 𝑊 )  ·o  ( ω  ↑o  𝑊 ) )  =  ( ω  ↑o  𝑊 ) ) | 
						
							| 69 | 48 63 45 67 68 | syl22anc | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑊 )  ·o  ( ω  ↑o  𝑊 ) )  =  ( ω  ↑o  𝑊 ) ) | 
						
							| 70 | 69 | f1oeq3d | ⊢ ( 𝜑  →  ( ( 𝑋  ∘  ◡ 𝑌 ) : ( ( ω  ↑o  𝑊 )  ·o  ( 𝐹 ‘ 𝑊 ) ) –1-1-onto→ ( ( 𝐹 ‘ 𝑊 )  ·o  ( ω  ↑o  𝑊 ) )  ↔  ( 𝑋  ∘  ◡ 𝑌 ) : ( ( ω  ↑o  𝑊 )  ·o  ( 𝐹 ‘ 𝑊 ) ) –1-1-onto→ ( ω  ↑o  𝑊 ) ) ) | 
						
							| 71 | 52 70 | mpbid | ⊢ ( 𝜑  →  ( 𝑋  ∘  ◡ 𝑌 ) : ( ( ω  ↑o  𝑊 )  ·o  ( 𝐹 ‘ 𝑊 ) ) –1-1-onto→ ( ω  ↑o  𝑊 ) ) | 
						
							| 72 | 1 2 3 4 5 6 7 8 9 10 36 | cnfcom2 | ⊢ ( 𝜑  →  ( 𝑇 ‘ dom  𝐺 ) : 𝐵 –1-1-onto→ ( ( ω  ↑o  𝑊 )  ·o  ( 𝐹 ‘ 𝑊 ) ) ) | 
						
							| 73 |  | f1oco | ⊢ ( ( ( 𝑋  ∘  ◡ 𝑌 ) : ( ( ω  ↑o  𝑊 )  ·o  ( 𝐹 ‘ 𝑊 ) ) –1-1-onto→ ( ω  ↑o  𝑊 )  ∧  ( 𝑇 ‘ dom  𝐺 ) : 𝐵 –1-1-onto→ ( ( ω  ↑o  𝑊 )  ·o  ( 𝐹 ‘ 𝑊 ) ) )  →  ( ( 𝑋  ∘  ◡ 𝑌 )  ∘  ( 𝑇 ‘ dom  𝐺 ) ) : 𝐵 –1-1-onto→ ( ω  ↑o  𝑊 ) ) | 
						
							| 74 | 71 72 73 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑋  ∘  ◡ 𝑌 )  ∘  ( 𝑇 ‘ dom  𝐺 ) ) : 𝐵 –1-1-onto→ ( ω  ↑o  𝑊 ) ) | 
						
							| 75 |  | f1oeq1 | ⊢ ( 𝑁  =  ( ( 𝑋  ∘  ◡ 𝑌 )  ∘  ( 𝑇 ‘ dom  𝐺 ) )  →  ( 𝑁 : 𝐵 –1-1-onto→ ( ω  ↑o  𝑊 )  ↔  ( ( 𝑋  ∘  ◡ 𝑌 )  ∘  ( 𝑇 ‘ dom  𝐺 ) ) : 𝐵 –1-1-onto→ ( ω  ↑o  𝑊 ) ) ) | 
						
							| 76 | 14 75 | ax-mp | ⊢ ( 𝑁 : 𝐵 –1-1-onto→ ( ω  ↑o  𝑊 )  ↔  ( ( 𝑋  ∘  ◡ 𝑌 )  ∘  ( 𝑇 ‘ dom  𝐺 ) ) : 𝐵 –1-1-onto→ ( ω  ↑o  𝑊 ) ) | 
						
							| 77 | 74 76 | sylibr | ⊢ ( 𝜑  →  𝑁 : 𝐵 –1-1-onto→ ( ω  ↑o  𝑊 ) ) |