| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnfcom3c.s | ⊢ 𝑆  =  dom  ( ω  CNF  𝐴 ) | 
						
							| 2 |  | cnfcom3c.f | ⊢ 𝐹  =  ( ◡ ( ω  CNF  𝐴 ) ‘ 𝑏 ) | 
						
							| 3 |  | cnfcom3c.g | ⊢ 𝐺  =  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) | 
						
							| 4 |  | cnfcom3c.h | ⊢ 𝐻  =  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( 𝑀  +o  𝑧 ) ) ,  ∅ ) | 
						
							| 5 |  | cnfcom3c.t | ⊢ 𝑇  =  seqω ( ( 𝑘  ∈  V ,  𝑓  ∈  V  ↦  𝐾 ) ,  ∅ ) | 
						
							| 6 |  | cnfcom3c.m | ⊢ 𝑀  =  ( ( ω  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 7 |  | cnfcom3c.k | ⊢ 𝐾  =  ( ( 𝑥  ∈  𝑀  ↦  ( dom  𝑓  +o  𝑥 ) )  ∪  ◡ ( 𝑥  ∈  dom  𝑓  ↦  ( 𝑀  +o  𝑥 ) ) ) | 
						
							| 8 |  | cnfcom3c.w | ⊢ 𝑊  =  ( 𝐺 ‘ ∪  dom  𝐺 ) | 
						
							| 9 |  | cnfcom3c.x | ⊢ 𝑋  =  ( 𝑢  ∈  ( 𝐹 ‘ 𝑊 ) ,  𝑣  ∈  ( ω  ↑o  𝑊 )  ↦  ( ( ( 𝐹 ‘ 𝑊 )  ·o  𝑣 )  +o  𝑢 ) ) | 
						
							| 10 |  | cnfcom3c.y | ⊢ 𝑌  =  ( 𝑢  ∈  ( 𝐹 ‘ 𝑊 ) ,  𝑣  ∈  ( ω  ↑o  𝑊 )  ↦  ( ( ( ω  ↑o  𝑊 )  ·o  𝑢 )  +o  𝑣 ) ) | 
						
							| 11 |  | cnfcom3c.n | ⊢ 𝑁  =  ( ( 𝑋  ∘  ◡ 𝑌 )  ∘  ( 𝑇 ‘ dom  𝐺 ) ) | 
						
							| 12 |  | cnfcom3c.l | ⊢ 𝐿  =  ( 𝑏  ∈  ( ω  ↑o  𝐴 )  ↦  𝑁 ) | 
						
							| 13 |  | simp1 | ⊢ ( ( 𝐴  ∈  On  ∧  𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 )  →  𝐴  ∈  On ) | 
						
							| 14 |  | omelon | ⊢ ω  ∈  On | 
						
							| 15 |  | 1onn | ⊢ 1o  ∈  ω | 
						
							| 16 |  | ondif2 | ⊢ ( ω  ∈  ( On  ∖  2o )  ↔  ( ω  ∈  On  ∧  1o  ∈  ω ) ) | 
						
							| 17 | 14 15 16 | mpbir2an | ⊢ ω  ∈  ( On  ∖  2o ) | 
						
							| 18 |  | oeworde | ⊢ ( ( ω  ∈  ( On  ∖  2o )  ∧  𝐴  ∈  On )  →  𝐴  ⊆  ( ω  ↑o  𝐴 ) ) | 
						
							| 19 | 17 13 18 | sylancr | ⊢ ( ( 𝐴  ∈  On  ∧  𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 )  →  𝐴  ⊆  ( ω  ↑o  𝐴 ) ) | 
						
							| 20 |  | simp2 | ⊢ ( ( 𝐴  ∈  On  ∧  𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 )  →  𝑏  ∈  𝐴 ) | 
						
							| 21 | 19 20 | sseldd | ⊢ ( ( 𝐴  ∈  On  ∧  𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 )  →  𝑏  ∈  ( ω  ↑o  𝐴 ) ) | 
						
							| 22 |  | simp3 | ⊢ ( ( 𝐴  ∈  On  ∧  𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 )  →  ω  ⊆  𝑏 ) | 
						
							| 23 | 1 13 21 2 3 4 5 6 7 8 22 | cnfcom3lem | ⊢ ( ( 𝐴  ∈  On  ∧  𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 )  →  𝑊  ∈  ( On  ∖  1o ) ) | 
						
							| 24 | 1 13 21 2 3 4 5 6 7 8 22 9 10 11 | cnfcom3 | ⊢ ( ( 𝐴  ∈  On  ∧  𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 )  →  𝑁 : 𝑏 –1-1-onto→ ( ω  ↑o  𝑊 ) ) | 
						
							| 25 |  | f1of | ⊢ ( 𝑁 : 𝑏 –1-1-onto→ ( ω  ↑o  𝑊 )  →  𝑁 : 𝑏 ⟶ ( ω  ↑o  𝑊 ) ) | 
						
							| 26 | 24 25 | syl | ⊢ ( ( 𝐴  ∈  On  ∧  𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 )  →  𝑁 : 𝑏 ⟶ ( ω  ↑o  𝑊 ) ) | 
						
							| 27 | 26 20 | fexd | ⊢ ( ( 𝐴  ∈  On  ∧  𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 )  →  𝑁  ∈  V ) | 
						
							| 28 | 12 | fvmpt2 | ⊢ ( ( 𝑏  ∈  ( ω  ↑o  𝐴 )  ∧  𝑁  ∈  V )  →  ( 𝐿 ‘ 𝑏 )  =  𝑁 ) | 
						
							| 29 | 21 27 28 | syl2anc | ⊢ ( ( 𝐴  ∈  On  ∧  𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 )  →  ( 𝐿 ‘ 𝑏 )  =  𝑁 ) | 
						
							| 30 | 29 | f1oeq1d | ⊢ ( ( 𝐴  ∈  On  ∧  𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 )  →  ( ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑊 )  ↔  𝑁 : 𝑏 –1-1-onto→ ( ω  ↑o  𝑊 ) ) ) | 
						
							| 31 | 24 30 | mpbird | ⊢ ( ( 𝐴  ∈  On  ∧  𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 )  →  ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑊 ) ) | 
						
							| 32 |  | oveq2 | ⊢ ( 𝑤  =  𝑊  →  ( ω  ↑o  𝑤 )  =  ( ω  ↑o  𝑊 ) ) | 
						
							| 33 | 32 | f1oeq3d | ⊢ ( 𝑤  =  𝑊  →  ( ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 )  ↔  ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑊 ) ) ) | 
						
							| 34 | 33 | rspcev | ⊢ ( ( 𝑊  ∈  ( On  ∖  1o )  ∧  ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑊 ) )  →  ∃ 𝑤  ∈  ( On  ∖  1o ) ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) | 
						
							| 35 | 23 31 34 | syl2anc | ⊢ ( ( 𝐴  ∈  On  ∧  𝑏  ∈  𝐴  ∧  ω  ⊆  𝑏 )  →  ∃ 𝑤  ∈  ( On  ∖  1o ) ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) | 
						
							| 36 | 35 | 3expia | ⊢ ( ( 𝐴  ∈  On  ∧  𝑏  ∈  𝐴 )  →  ( ω  ⊆  𝑏  →  ∃ 𝑤  ∈  ( On  ∖  1o ) ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) ) | 
						
							| 37 | 36 | ralrimiva | ⊢ ( 𝐴  ∈  On  →  ∀ 𝑏  ∈  𝐴 ( ω  ⊆  𝑏  →  ∃ 𝑤  ∈  ( On  ∖  1o ) ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) ) | 
						
							| 38 |  | ovex | ⊢ ( ω  ↑o  𝐴 )  ∈  V | 
						
							| 39 | 38 | mptex | ⊢ ( 𝑏  ∈  ( ω  ↑o  𝐴 )  ↦  𝑁 )  ∈  V | 
						
							| 40 | 12 39 | eqeltri | ⊢ 𝐿  ∈  V | 
						
							| 41 |  | nfmpt1 | ⊢ Ⅎ 𝑏 ( 𝑏  ∈  ( ω  ↑o  𝐴 )  ↦  𝑁 ) | 
						
							| 42 | 12 41 | nfcxfr | ⊢ Ⅎ 𝑏 𝐿 | 
						
							| 43 | 42 | nfeq2 | ⊢ Ⅎ 𝑏 𝑔  =  𝐿 | 
						
							| 44 |  | fveq1 | ⊢ ( 𝑔  =  𝐿  →  ( 𝑔 ‘ 𝑏 )  =  ( 𝐿 ‘ 𝑏 ) ) | 
						
							| 45 | 44 | f1oeq1d | ⊢ ( 𝑔  =  𝐿  →  ( ( 𝑔 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 )  ↔  ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) ) | 
						
							| 46 | 45 | rexbidv | ⊢ ( 𝑔  =  𝐿  →  ( ∃ 𝑤  ∈  ( On  ∖  1o ) ( 𝑔 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 )  ↔  ∃ 𝑤  ∈  ( On  ∖  1o ) ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) ) | 
						
							| 47 | 46 | imbi2d | ⊢ ( 𝑔  =  𝐿  →  ( ( ω  ⊆  𝑏  →  ∃ 𝑤  ∈  ( On  ∖  1o ) ( 𝑔 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) )  ↔  ( ω  ⊆  𝑏  →  ∃ 𝑤  ∈  ( On  ∖  1o ) ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) ) ) | 
						
							| 48 | 43 47 | ralbid | ⊢ ( 𝑔  =  𝐿  →  ( ∀ 𝑏  ∈  𝐴 ( ω  ⊆  𝑏  →  ∃ 𝑤  ∈  ( On  ∖  1o ) ( 𝑔 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) )  ↔  ∀ 𝑏  ∈  𝐴 ( ω  ⊆  𝑏  →  ∃ 𝑤  ∈  ( On  ∖  1o ) ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) ) ) | 
						
							| 49 | 40 48 | spcev | ⊢ ( ∀ 𝑏  ∈  𝐴 ( ω  ⊆  𝑏  →  ∃ 𝑤  ∈  ( On  ∖  1o ) ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) )  →  ∃ 𝑔 ∀ 𝑏  ∈  𝐴 ( ω  ⊆  𝑏  →  ∃ 𝑤  ∈  ( On  ∖  1o ) ( 𝑔 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) ) | 
						
							| 50 | 37 49 | syl | ⊢ ( 𝐴  ∈  On  →  ∃ 𝑔 ∀ 𝑏  ∈  𝐴 ( ω  ⊆  𝑏  →  ∃ 𝑤  ∈  ( On  ∖  1o ) ( 𝑔 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω  ↑o  𝑤 ) ) ) |