Metamath Proof Explorer


Theorem cnfcom3clem

Description: Lemma for cnfcom3c . (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 4-Jul-2019)

Ref Expression
Hypotheses cnfcom3c.s 𝑆 = dom ( ω CNF 𝐴 )
cnfcom3c.f 𝐹 = ( ( ω CNF 𝐴 ) ‘ 𝑏 )
cnfcom3c.g 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) )
cnfcom3c.h 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) , ∅ )
cnfcom3c.t 𝑇 = seqω ( ( 𝑘 ∈ V , 𝑓 ∈ V ↦ 𝐾 ) , ∅ )
cnfcom3c.m 𝑀 = ( ( ω ↑o ( 𝐺𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺𝑘 ) ) )
cnfcom3c.k 𝐾 = ( ( 𝑥𝑀 ↦ ( dom 𝑓 +o 𝑥 ) ) ∪ ( 𝑥 ∈ dom 𝑓 ↦ ( 𝑀 +o 𝑥 ) ) )
cnfcom3c.w 𝑊 = ( 𝐺 dom 𝐺 )
cnfcom3c.x 𝑋 = ( 𝑢 ∈ ( 𝐹𝑊 ) , 𝑣 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( 𝐹𝑊 ) ·o 𝑣 ) +o 𝑢 ) )
cnfcom3c.y 𝑌 = ( 𝑢 ∈ ( 𝐹𝑊 ) , 𝑣 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( ω ↑o 𝑊 ) ·o 𝑢 ) +o 𝑣 ) )
cnfcom3c.n 𝑁 = ( ( 𝑋 𝑌 ) ∘ ( 𝑇 ‘ dom 𝐺 ) )
cnfcom3c.l 𝐿 = ( 𝑏 ∈ ( ω ↑o 𝐴 ) ↦ 𝑁 )
Assertion cnfcom3clem ( 𝐴 ∈ On → ∃ 𝑔𝑏𝐴 ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑔𝑏 ) : 𝑏1-1-onto→ ( ω ↑o 𝑤 ) ) )

Proof

Step Hyp Ref Expression
1 cnfcom3c.s 𝑆 = dom ( ω CNF 𝐴 )
2 cnfcom3c.f 𝐹 = ( ( ω CNF 𝐴 ) ‘ 𝑏 )
3 cnfcom3c.g 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) )
4 cnfcom3c.h 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) , ∅ )
5 cnfcom3c.t 𝑇 = seqω ( ( 𝑘 ∈ V , 𝑓 ∈ V ↦ 𝐾 ) , ∅ )
6 cnfcom3c.m 𝑀 = ( ( ω ↑o ( 𝐺𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺𝑘 ) ) )
7 cnfcom3c.k 𝐾 = ( ( 𝑥𝑀 ↦ ( dom 𝑓 +o 𝑥 ) ) ∪ ( 𝑥 ∈ dom 𝑓 ↦ ( 𝑀 +o 𝑥 ) ) )
8 cnfcom3c.w 𝑊 = ( 𝐺 dom 𝐺 )
9 cnfcom3c.x 𝑋 = ( 𝑢 ∈ ( 𝐹𝑊 ) , 𝑣 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( 𝐹𝑊 ) ·o 𝑣 ) +o 𝑢 ) )
10 cnfcom3c.y 𝑌 = ( 𝑢 ∈ ( 𝐹𝑊 ) , 𝑣 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( ω ↑o 𝑊 ) ·o 𝑢 ) +o 𝑣 ) )
11 cnfcom3c.n 𝑁 = ( ( 𝑋 𝑌 ) ∘ ( 𝑇 ‘ dom 𝐺 ) )
12 cnfcom3c.l 𝐿 = ( 𝑏 ∈ ( ω ↑o 𝐴 ) ↦ 𝑁 )
13 simp1 ( ( 𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏 ) → 𝐴 ∈ On )
14 omelon ω ∈ On
15 1onn 1o ∈ ω
16 ondif2 ( ω ∈ ( On ∖ 2o ) ↔ ( ω ∈ On ∧ 1o ∈ ω ) )
17 14 15 16 mpbir2an ω ∈ ( On ∖ 2o )
18 oeworde ( ( ω ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ On ) → 𝐴 ⊆ ( ω ↑o 𝐴 ) )
19 17 13 18 sylancr ( ( 𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏 ) → 𝐴 ⊆ ( ω ↑o 𝐴 ) )
20 simp2 ( ( 𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏 ) → 𝑏𝐴 )
21 19 20 sseldd ( ( 𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏 ) → 𝑏 ∈ ( ω ↑o 𝐴 ) )
22 simp3 ( ( 𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏 ) → ω ⊆ 𝑏 )
23 1 13 21 2 3 4 5 6 7 8 22 cnfcom3lem ( ( 𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏 ) → 𝑊 ∈ ( On ∖ 1o ) )
24 1 13 21 2 3 4 5 6 7 8 22 9 10 11 cnfcom3 ( ( 𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏 ) → 𝑁 : 𝑏1-1-onto→ ( ω ↑o 𝑊 ) )
25 f1of ( 𝑁 : 𝑏1-1-onto→ ( ω ↑o 𝑊 ) → 𝑁 : 𝑏 ⟶ ( ω ↑o 𝑊 ) )
26 24 25 syl ( ( 𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏 ) → 𝑁 : 𝑏 ⟶ ( ω ↑o 𝑊 ) )
27 26 20 fexd ( ( 𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏 ) → 𝑁 ∈ V )
28 12 fvmpt2 ( ( 𝑏 ∈ ( ω ↑o 𝐴 ) ∧ 𝑁 ∈ V ) → ( 𝐿𝑏 ) = 𝑁 )
29 21 27 28 syl2anc ( ( 𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏 ) → ( 𝐿𝑏 ) = 𝑁 )
30 29 f1oeq1d ( ( 𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏 ) → ( ( 𝐿𝑏 ) : 𝑏1-1-onto→ ( ω ↑o 𝑊 ) ↔ 𝑁 : 𝑏1-1-onto→ ( ω ↑o 𝑊 ) ) )
31 24 30 mpbird ( ( 𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏 ) → ( 𝐿𝑏 ) : 𝑏1-1-onto→ ( ω ↑o 𝑊 ) )
32 oveq2 ( 𝑤 = 𝑊 → ( ω ↑o 𝑤 ) = ( ω ↑o 𝑊 ) )
33 32 f1oeq3d ( 𝑤 = 𝑊 → ( ( 𝐿𝑏 ) : 𝑏1-1-onto→ ( ω ↑o 𝑤 ) ↔ ( 𝐿𝑏 ) : 𝑏1-1-onto→ ( ω ↑o 𝑊 ) ) )
34 33 rspcev ( ( 𝑊 ∈ ( On ∖ 1o ) ∧ ( 𝐿𝑏 ) : 𝑏1-1-onto→ ( ω ↑o 𝑊 ) ) → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝐿𝑏 ) : 𝑏1-1-onto→ ( ω ↑o 𝑤 ) )
35 23 31 34 syl2anc ( ( 𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏 ) → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝐿𝑏 ) : 𝑏1-1-onto→ ( ω ↑o 𝑤 ) )
36 35 3expia ( ( 𝐴 ∈ On ∧ 𝑏𝐴 ) → ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝐿𝑏 ) : 𝑏1-1-onto→ ( ω ↑o 𝑤 ) ) )
37 36 ralrimiva ( 𝐴 ∈ On → ∀ 𝑏𝐴 ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝐿𝑏 ) : 𝑏1-1-onto→ ( ω ↑o 𝑤 ) ) )
38 ovex ( ω ↑o 𝐴 ) ∈ V
39 38 mptex ( 𝑏 ∈ ( ω ↑o 𝐴 ) ↦ 𝑁 ) ∈ V
40 12 39 eqeltri 𝐿 ∈ V
41 nfmpt1 𝑏 ( 𝑏 ∈ ( ω ↑o 𝐴 ) ↦ 𝑁 )
42 12 41 nfcxfr 𝑏 𝐿
43 42 nfeq2 𝑏 𝑔 = 𝐿
44 fveq1 ( 𝑔 = 𝐿 → ( 𝑔𝑏 ) = ( 𝐿𝑏 ) )
45 44 f1oeq1d ( 𝑔 = 𝐿 → ( ( 𝑔𝑏 ) : 𝑏1-1-onto→ ( ω ↑o 𝑤 ) ↔ ( 𝐿𝑏 ) : 𝑏1-1-onto→ ( ω ↑o 𝑤 ) ) )
46 45 rexbidv ( 𝑔 = 𝐿 → ( ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑔𝑏 ) : 𝑏1-1-onto→ ( ω ↑o 𝑤 ) ↔ ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝐿𝑏 ) : 𝑏1-1-onto→ ( ω ↑o 𝑤 ) ) )
47 46 imbi2d ( 𝑔 = 𝐿 → ( ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑔𝑏 ) : 𝑏1-1-onto→ ( ω ↑o 𝑤 ) ) ↔ ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝐿𝑏 ) : 𝑏1-1-onto→ ( ω ↑o 𝑤 ) ) ) )
48 43 47 ralbid ( 𝑔 = 𝐿 → ( ∀ 𝑏𝐴 ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑔𝑏 ) : 𝑏1-1-onto→ ( ω ↑o 𝑤 ) ) ↔ ∀ 𝑏𝐴 ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝐿𝑏 ) : 𝑏1-1-onto→ ( ω ↑o 𝑤 ) ) ) )
49 40 48 spcev ( ∀ 𝑏𝐴 ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝐿𝑏 ) : 𝑏1-1-onto→ ( ω ↑o 𝑤 ) ) → ∃ 𝑔𝑏𝐴 ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑔𝑏 ) : 𝑏1-1-onto→ ( ω ↑o 𝑤 ) ) )
50 37 49 syl ( 𝐴 ∈ On → ∃ 𝑔𝑏𝐴 ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑔𝑏 ) : 𝑏1-1-onto→ ( ω ↑o 𝑤 ) ) )