Step |
Hyp |
Ref |
Expression |
1 |
|
cnfcom3c.s |
⊢ 𝑆 = dom ( ω CNF 𝐴 ) |
2 |
|
cnfcom3c.f |
⊢ 𝐹 = ( ◡ ( ω CNF 𝐴 ) ‘ 𝑏 ) |
3 |
|
cnfcom3c.g |
⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) |
4 |
|
cnfcom3c.h |
⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) , ∅ ) |
5 |
|
cnfcom3c.t |
⊢ 𝑇 = seqω ( ( 𝑘 ∈ V , 𝑓 ∈ V ↦ 𝐾 ) , ∅ ) |
6 |
|
cnfcom3c.m |
⊢ 𝑀 = ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
7 |
|
cnfcom3c.k |
⊢ 𝐾 = ( ( 𝑥 ∈ 𝑀 ↦ ( dom 𝑓 +o 𝑥 ) ) ∪ ◡ ( 𝑥 ∈ dom 𝑓 ↦ ( 𝑀 +o 𝑥 ) ) ) |
8 |
|
cnfcom3c.w |
⊢ 𝑊 = ( 𝐺 ‘ ∪ dom 𝐺 ) |
9 |
|
cnfcom3c.x |
⊢ 𝑋 = ( 𝑢 ∈ ( 𝐹 ‘ 𝑊 ) , 𝑣 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( 𝐹 ‘ 𝑊 ) ·o 𝑣 ) +o 𝑢 ) ) |
10 |
|
cnfcom3c.y |
⊢ 𝑌 = ( 𝑢 ∈ ( 𝐹 ‘ 𝑊 ) , 𝑣 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( ω ↑o 𝑊 ) ·o 𝑢 ) +o 𝑣 ) ) |
11 |
|
cnfcom3c.n |
⊢ 𝑁 = ( ( 𝑋 ∘ ◡ 𝑌 ) ∘ ( 𝑇 ‘ dom 𝐺 ) ) |
12 |
|
cnfcom3c.l |
⊢ 𝐿 = ( 𝑏 ∈ ( ω ↑o 𝐴 ) ↦ 𝑁 ) |
13 |
|
simp1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) → 𝐴 ∈ On ) |
14 |
|
omelon |
⊢ ω ∈ On |
15 |
|
1onn |
⊢ 1o ∈ ω |
16 |
|
ondif2 |
⊢ ( ω ∈ ( On ∖ 2o ) ↔ ( ω ∈ On ∧ 1o ∈ ω ) ) |
17 |
14 15 16
|
mpbir2an |
⊢ ω ∈ ( On ∖ 2o ) |
18 |
|
oeworde |
⊢ ( ( ω ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ On ) → 𝐴 ⊆ ( ω ↑o 𝐴 ) ) |
19 |
17 13 18
|
sylancr |
⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) → 𝐴 ⊆ ( ω ↑o 𝐴 ) ) |
20 |
|
simp2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) → 𝑏 ∈ 𝐴 ) |
21 |
19 20
|
sseldd |
⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) → 𝑏 ∈ ( ω ↑o 𝐴 ) ) |
22 |
|
simp3 |
⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) → ω ⊆ 𝑏 ) |
23 |
1 13 21 2 3 4 5 6 7 8 22
|
cnfcom3lem |
⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) → 𝑊 ∈ ( On ∖ 1o ) ) |
24 |
1 13 21 2 3 4 5 6 7 8 22 9 10 11
|
cnfcom3 |
⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) → 𝑁 : 𝑏 –1-1-onto→ ( ω ↑o 𝑊 ) ) |
25 |
|
f1of |
⊢ ( 𝑁 : 𝑏 –1-1-onto→ ( ω ↑o 𝑊 ) → 𝑁 : 𝑏 ⟶ ( ω ↑o 𝑊 ) ) |
26 |
24 25
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) → 𝑁 : 𝑏 ⟶ ( ω ↑o 𝑊 ) ) |
27 |
26 20
|
fexd |
⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) → 𝑁 ∈ V ) |
28 |
12
|
fvmpt2 |
⊢ ( ( 𝑏 ∈ ( ω ↑o 𝐴 ) ∧ 𝑁 ∈ V ) → ( 𝐿 ‘ 𝑏 ) = 𝑁 ) |
29 |
21 27 28
|
syl2anc |
⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) → ( 𝐿 ‘ 𝑏 ) = 𝑁 ) |
30 |
29
|
f1oeq1d |
⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) → ( ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑊 ) ↔ 𝑁 : 𝑏 –1-1-onto→ ( ω ↑o 𝑊 ) ) ) |
31 |
24 30
|
mpbird |
⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) → ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑊 ) ) |
32 |
|
oveq2 |
⊢ ( 𝑤 = 𝑊 → ( ω ↑o 𝑤 ) = ( ω ↑o 𝑊 ) ) |
33 |
32
|
f1oeq3d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ↔ ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑊 ) ) ) |
34 |
33
|
rspcev |
⊢ ( ( 𝑊 ∈ ( On ∖ 1o ) ∧ ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑊 ) ) → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) |
35 |
23 31 34
|
syl2anc |
⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) |
36 |
35
|
3expia |
⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ) → ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) |
37 |
36
|
ralrimiva |
⊢ ( 𝐴 ∈ On → ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) |
38 |
|
ovex |
⊢ ( ω ↑o 𝐴 ) ∈ V |
39 |
38
|
mptex |
⊢ ( 𝑏 ∈ ( ω ↑o 𝐴 ) ↦ 𝑁 ) ∈ V |
40 |
12 39
|
eqeltri |
⊢ 𝐿 ∈ V |
41 |
|
nfmpt1 |
⊢ Ⅎ 𝑏 ( 𝑏 ∈ ( ω ↑o 𝐴 ) ↦ 𝑁 ) |
42 |
12 41
|
nfcxfr |
⊢ Ⅎ 𝑏 𝐿 |
43 |
42
|
nfeq2 |
⊢ Ⅎ 𝑏 𝑔 = 𝐿 |
44 |
|
fveq1 |
⊢ ( 𝑔 = 𝐿 → ( 𝑔 ‘ 𝑏 ) = ( 𝐿 ‘ 𝑏 ) ) |
45 |
44
|
f1oeq1d |
⊢ ( 𝑔 = 𝐿 → ( ( 𝑔 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ↔ ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) |
46 |
45
|
rexbidv |
⊢ ( 𝑔 = 𝐿 → ( ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑔 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ↔ ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) |
47 |
46
|
imbi2d |
⊢ ( 𝑔 = 𝐿 → ( ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑔 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ↔ ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) ) |
48 |
43 47
|
ralbid |
⊢ ( 𝑔 = 𝐿 → ( ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑔 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ↔ ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) ) |
49 |
40 48
|
spcev |
⊢ ( ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝐿 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) → ∃ 𝑔 ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑔 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) |
50 |
37 49
|
syl |
⊢ ( 𝐴 ∈ On → ∃ 𝑔 ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑔 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) |