| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnfcom.s | ⊢ 𝑆  =  dom  ( ω  CNF  𝐴 ) | 
						
							| 2 |  | cnfcom.a | ⊢ ( 𝜑  →  𝐴  ∈  On ) | 
						
							| 3 |  | cnfcom.b | ⊢ ( 𝜑  →  𝐵  ∈  ( ω  ↑o  𝐴 ) ) | 
						
							| 4 |  | cnfcom.f | ⊢ 𝐹  =  ( ◡ ( ω  CNF  𝐴 ) ‘ 𝐵 ) | 
						
							| 5 |  | cnfcom.g | ⊢ 𝐺  =  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) | 
						
							| 6 |  | cnfcom.h | ⊢ 𝐻  =  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( 𝑀  +o  𝑧 ) ) ,  ∅ ) | 
						
							| 7 |  | cnfcom.t | ⊢ 𝑇  =  seqω ( ( 𝑘  ∈  V ,  𝑓  ∈  V  ↦  𝐾 ) ,  ∅ ) | 
						
							| 8 |  | cnfcom.m | ⊢ 𝑀  =  ( ( ω  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 9 |  | cnfcom.k | ⊢ 𝐾  =  ( ( 𝑥  ∈  𝑀  ↦  ( dom  𝑓  +o  𝑥 ) )  ∪  ◡ ( 𝑥  ∈  dom  𝑓  ↦  ( 𝑀  +o  𝑥 ) ) ) | 
						
							| 10 |  | cnfcom.w | ⊢ 𝑊  =  ( 𝐺 ‘ ∪  dom  𝐺 ) | 
						
							| 11 |  | cnfcom3.1 | ⊢ ( 𝜑  →  ω  ⊆  𝐵 ) | 
						
							| 12 |  | suppssdm | ⊢ ( 𝐹  supp  ∅ )  ⊆  dom  𝐹 | 
						
							| 13 |  | omelon | ⊢ ω  ∈  On | 
						
							| 14 | 13 | a1i | ⊢ ( 𝜑  →  ω  ∈  On ) | 
						
							| 15 | 1 14 2 | cantnff1o | ⊢ ( 𝜑  →  ( ω  CNF  𝐴 ) : 𝑆 –1-1-onto→ ( ω  ↑o  𝐴 ) ) | 
						
							| 16 |  | f1ocnv | ⊢ ( ( ω  CNF  𝐴 ) : 𝑆 –1-1-onto→ ( ω  ↑o  𝐴 )  →  ◡ ( ω  CNF  𝐴 ) : ( ω  ↑o  𝐴 ) –1-1-onto→ 𝑆 ) | 
						
							| 17 |  | f1of | ⊢ ( ◡ ( ω  CNF  𝐴 ) : ( ω  ↑o  𝐴 ) –1-1-onto→ 𝑆  →  ◡ ( ω  CNF  𝐴 ) : ( ω  ↑o  𝐴 ) ⟶ 𝑆 ) | 
						
							| 18 | 15 16 17 | 3syl | ⊢ ( 𝜑  →  ◡ ( ω  CNF  𝐴 ) : ( ω  ↑o  𝐴 ) ⟶ 𝑆 ) | 
						
							| 19 | 18 3 | ffvelcdmd | ⊢ ( 𝜑  →  ( ◡ ( ω  CNF  𝐴 ) ‘ 𝐵 )  ∈  𝑆 ) | 
						
							| 20 | 4 19 | eqeltrid | ⊢ ( 𝜑  →  𝐹  ∈  𝑆 ) | 
						
							| 21 | 1 14 2 | cantnfs | ⊢ ( 𝜑  →  ( 𝐹  ∈  𝑆  ↔  ( 𝐹 : 𝐴 ⟶ ω  ∧  𝐹  finSupp  ∅ ) ) ) | 
						
							| 22 | 20 21 | mpbid | ⊢ ( 𝜑  →  ( 𝐹 : 𝐴 ⟶ ω  ∧  𝐹  finSupp  ∅ ) ) | 
						
							| 23 | 22 | simpld | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ω ) | 
						
							| 24 | 12 23 | fssdm | ⊢ ( 𝜑  →  ( 𝐹  supp  ∅ )  ⊆  𝐴 ) | 
						
							| 25 |  | ovex | ⊢ ( 𝐹  supp  ∅ )  ∈  V | 
						
							| 26 | 5 | oion | ⊢ ( ( 𝐹  supp  ∅ )  ∈  V  →  dom  𝐺  ∈  On ) | 
						
							| 27 | 25 26 | ax-mp | ⊢ dom  𝐺  ∈  On | 
						
							| 28 | 27 | elexi | ⊢ dom  𝐺  ∈  V | 
						
							| 29 | 28 | uniex | ⊢ ∪  dom  𝐺  ∈  V | 
						
							| 30 | 29 | sucid | ⊢ ∪  dom  𝐺  ∈  suc  ∪  dom  𝐺 | 
						
							| 31 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 32 | 31 | a1i | ⊢ ( 𝜑  →  ∅  ∈  ω ) | 
						
							| 33 | 11 32 | sseldd | ⊢ ( 𝜑  →  ∅  ∈  𝐵 ) | 
						
							| 34 | 1 2 3 4 5 6 7 8 9 10 33 | cnfcom2lem | ⊢ ( 𝜑  →  dom  𝐺  =  suc  ∪  dom  𝐺 ) | 
						
							| 35 | 30 34 | eleqtrrid | ⊢ ( 𝜑  →  ∪  dom  𝐺  ∈  dom  𝐺 ) | 
						
							| 36 | 5 | oif | ⊢ 𝐺 : dom  𝐺 ⟶ ( 𝐹  supp  ∅ ) | 
						
							| 37 | 36 | ffvelcdmi | ⊢ ( ∪  dom  𝐺  ∈  dom  𝐺  →  ( 𝐺 ‘ ∪  dom  𝐺 )  ∈  ( 𝐹  supp  ∅ ) ) | 
						
							| 38 | 35 37 | syl | ⊢ ( 𝜑  →  ( 𝐺 ‘ ∪  dom  𝐺 )  ∈  ( 𝐹  supp  ∅ ) ) | 
						
							| 39 | 24 38 | sseldd | ⊢ ( 𝜑  →  ( 𝐺 ‘ ∪  dom  𝐺 )  ∈  𝐴 ) | 
						
							| 40 |  | onelon | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝐺 ‘ ∪  dom  𝐺 )  ∈  𝐴 )  →  ( 𝐺 ‘ ∪  dom  𝐺 )  ∈  On ) | 
						
							| 41 | 2 39 40 | syl2anc | ⊢ ( 𝜑  →  ( 𝐺 ‘ ∪  dom  𝐺 )  ∈  On ) | 
						
							| 42 | 10 41 | eqeltrid | ⊢ ( 𝜑  →  𝑊  ∈  On ) | 
						
							| 43 |  | oecl | ⊢ ( ( ω  ∈  On  ∧  𝐴  ∈  On )  →  ( ω  ↑o  𝐴 )  ∈  On ) | 
						
							| 44 | 13 2 43 | sylancr | ⊢ ( 𝜑  →  ( ω  ↑o  𝐴 )  ∈  On ) | 
						
							| 45 |  | onelon | ⊢ ( ( ( ω  ↑o  𝐴 )  ∈  On  ∧  𝐵  ∈  ( ω  ↑o  𝐴 ) )  →  𝐵  ∈  On ) | 
						
							| 46 | 44 3 45 | syl2anc | ⊢ ( 𝜑  →  𝐵  ∈  On ) | 
						
							| 47 |  | ontri1 | ⊢ ( ( ω  ∈  On  ∧  𝐵  ∈  On )  →  ( ω  ⊆  𝐵  ↔  ¬  𝐵  ∈  ω ) ) | 
						
							| 48 | 13 46 47 | sylancr | ⊢ ( 𝜑  →  ( ω  ⊆  𝐵  ↔  ¬  𝐵  ∈  ω ) ) | 
						
							| 49 | 11 48 | mpbid | ⊢ ( 𝜑  →  ¬  𝐵  ∈  ω ) | 
						
							| 50 | 4 | fveq2i | ⊢ ( ( ω  CNF  𝐴 ) ‘ 𝐹 )  =  ( ( ω  CNF  𝐴 ) ‘ ( ◡ ( ω  CNF  𝐴 ) ‘ 𝐵 ) ) | 
						
							| 51 |  | f1ocnvfv2 | ⊢ ( ( ( ω  CNF  𝐴 ) : 𝑆 –1-1-onto→ ( ω  ↑o  𝐴 )  ∧  𝐵  ∈  ( ω  ↑o  𝐴 ) )  →  ( ( ω  CNF  𝐴 ) ‘ ( ◡ ( ω  CNF  𝐴 ) ‘ 𝐵 ) )  =  𝐵 ) | 
						
							| 52 | 15 3 51 | syl2anc | ⊢ ( 𝜑  →  ( ( ω  CNF  𝐴 ) ‘ ( ◡ ( ω  CNF  𝐴 ) ‘ 𝐵 ) )  =  𝐵 ) | 
						
							| 53 | 50 52 | eqtrid | ⊢ ( 𝜑  →  ( ( ω  CNF  𝐴 ) ‘ 𝐹 )  =  𝐵 ) | 
						
							| 54 | 53 | adantr | ⊢ ( ( 𝜑  ∧  𝑊  =  ∅ )  →  ( ( ω  CNF  𝐴 ) ‘ 𝐹 )  =  𝐵 ) | 
						
							| 55 | 13 | a1i | ⊢ ( ( 𝜑  ∧  𝑊  =  ∅ )  →  ω  ∈  On ) | 
						
							| 56 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑊  =  ∅ )  →  𝐴  ∈  On ) | 
						
							| 57 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝑊  =  ∅ )  →  𝐹  ∈  𝑆 ) | 
						
							| 58 | 31 | a1i | ⊢ ( ( 𝜑  ∧  𝑊  =  ∅ )  →  ∅  ∈  ω ) | 
						
							| 59 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 60 | 59 | a1i | ⊢ ( ( 𝜑  ∧  𝑊  =  ∅ )  →  1o  ∈  On ) | 
						
							| 61 |  | ovexd | ⊢ ( 𝜑  →  ( 𝐹  supp  ∅ )  ∈  V ) | 
						
							| 62 | 1 14 2 5 20 | cantnfcl | ⊢ ( 𝜑  →  (  E   We  ( 𝐹  supp  ∅ )  ∧  dom  𝐺  ∈  ω ) ) | 
						
							| 63 | 62 | simpld | ⊢ ( 𝜑  →   E   We  ( 𝐹  supp  ∅ ) ) | 
						
							| 64 | 5 | oiiso | ⊢ ( ( ( 𝐹  supp  ∅ )  ∈  V  ∧   E   We  ( 𝐹  supp  ∅ ) )  →  𝐺  Isom   E  ,   E  ( dom  𝐺 ,  ( 𝐹  supp  ∅ ) ) ) | 
						
							| 65 | 61 63 64 | syl2anc | ⊢ ( 𝜑  →  𝐺  Isom   E  ,   E  ( dom  𝐺 ,  ( 𝐹  supp  ∅ ) ) ) | 
						
							| 66 | 65 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑊  =  ∅ )  ∧  𝑥  ∈  ( 𝐹  supp  ∅ ) )  →  𝐺  Isom   E  ,   E  ( dom  𝐺 ,  ( 𝐹  supp  ∅ ) ) ) | 
						
							| 67 |  | isof1o | ⊢ ( 𝐺  Isom   E  ,   E  ( dom  𝐺 ,  ( 𝐹  supp  ∅ ) )  →  𝐺 : dom  𝐺 –1-1-onto→ ( 𝐹  supp  ∅ ) ) | 
						
							| 68 | 66 67 | syl | ⊢ ( ( ( 𝜑  ∧  𝑊  =  ∅ )  ∧  𝑥  ∈  ( 𝐹  supp  ∅ ) )  →  𝐺 : dom  𝐺 –1-1-onto→ ( 𝐹  supp  ∅ ) ) | 
						
							| 69 |  | f1ocnv | ⊢ ( 𝐺 : dom  𝐺 –1-1-onto→ ( 𝐹  supp  ∅ )  →  ◡ 𝐺 : ( 𝐹  supp  ∅ ) –1-1-onto→ dom  𝐺 ) | 
						
							| 70 |  | f1of | ⊢ ( ◡ 𝐺 : ( 𝐹  supp  ∅ ) –1-1-onto→ dom  𝐺  →  ◡ 𝐺 : ( 𝐹  supp  ∅ ) ⟶ dom  𝐺 ) | 
						
							| 71 | 68 69 70 | 3syl | ⊢ ( ( ( 𝜑  ∧  𝑊  =  ∅ )  ∧  𝑥  ∈  ( 𝐹  supp  ∅ ) )  →  ◡ 𝐺 : ( 𝐹  supp  ∅ ) ⟶ dom  𝐺 ) | 
						
							| 72 |  | ffvelcdm | ⊢ ( ( ◡ 𝐺 : ( 𝐹  supp  ∅ ) ⟶ dom  𝐺  ∧  𝑥  ∈  ( 𝐹  supp  ∅ ) )  →  ( ◡ 𝐺 ‘ 𝑥 )  ∈  dom  𝐺 ) | 
						
							| 73 | 71 72 | sylancom | ⊢ ( ( ( 𝜑  ∧  𝑊  =  ∅ )  ∧  𝑥  ∈  ( 𝐹  supp  ∅ ) )  →  ( ◡ 𝐺 ‘ 𝑥 )  ∈  dom  𝐺 ) | 
						
							| 74 |  | elssuni | ⊢ ( ( ◡ 𝐺 ‘ 𝑥 )  ∈  dom  𝐺  →  ( ◡ 𝐺 ‘ 𝑥 )  ⊆  ∪  dom  𝐺 ) | 
						
							| 75 | 73 74 | syl | ⊢ ( ( ( 𝜑  ∧  𝑊  =  ∅ )  ∧  𝑥  ∈  ( 𝐹  supp  ∅ ) )  →  ( ◡ 𝐺 ‘ 𝑥 )  ⊆  ∪  dom  𝐺 ) | 
						
							| 76 |  | onelon | ⊢ ( ( dom  𝐺  ∈  On  ∧  ( ◡ 𝐺 ‘ 𝑥 )  ∈  dom  𝐺 )  →  ( ◡ 𝐺 ‘ 𝑥 )  ∈  On ) | 
						
							| 77 | 27 73 76 | sylancr | ⊢ ( ( ( 𝜑  ∧  𝑊  =  ∅ )  ∧  𝑥  ∈  ( 𝐹  supp  ∅ ) )  →  ( ◡ 𝐺 ‘ 𝑥 )  ∈  On ) | 
						
							| 78 |  | onuni | ⊢ ( dom  𝐺  ∈  On  →  ∪  dom  𝐺  ∈  On ) | 
						
							| 79 | 27 78 | ax-mp | ⊢ ∪  dom  𝐺  ∈  On | 
						
							| 80 |  | ontri1 | ⊢ ( ( ( ◡ 𝐺 ‘ 𝑥 )  ∈  On  ∧  ∪  dom  𝐺  ∈  On )  →  ( ( ◡ 𝐺 ‘ 𝑥 )  ⊆  ∪  dom  𝐺  ↔  ¬  ∪  dom  𝐺  ∈  ( ◡ 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 81 | 77 79 80 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑊  =  ∅ )  ∧  𝑥  ∈  ( 𝐹  supp  ∅ ) )  →  ( ( ◡ 𝐺 ‘ 𝑥 )  ⊆  ∪  dom  𝐺  ↔  ¬  ∪  dom  𝐺  ∈  ( ◡ 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 82 | 75 81 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑊  =  ∅ )  ∧  𝑥  ∈  ( 𝐹  supp  ∅ ) )  →  ¬  ∪  dom  𝐺  ∈  ( ◡ 𝐺 ‘ 𝑥 ) ) | 
						
							| 83 | 35 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑊  =  ∅ )  ∧  𝑥  ∈  ( 𝐹  supp  ∅ ) )  →  ∪  dom  𝐺  ∈  dom  𝐺 ) | 
						
							| 84 |  | isorel | ⊢ ( ( 𝐺  Isom   E  ,   E  ( dom  𝐺 ,  ( 𝐹  supp  ∅ ) )  ∧  ( ∪  dom  𝐺  ∈  dom  𝐺  ∧  ( ◡ 𝐺 ‘ 𝑥 )  ∈  dom  𝐺 ) )  →  ( ∪  dom  𝐺  E  ( ◡ 𝐺 ‘ 𝑥 )  ↔  ( 𝐺 ‘ ∪  dom  𝐺 )  E  ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 85 | 66 83 73 84 | syl12anc | ⊢ ( ( ( 𝜑  ∧  𝑊  =  ∅ )  ∧  𝑥  ∈  ( 𝐹  supp  ∅ ) )  →  ( ∪  dom  𝐺  E  ( ◡ 𝐺 ‘ 𝑥 )  ↔  ( 𝐺 ‘ ∪  dom  𝐺 )  E  ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 86 |  | fvex | ⊢ ( ◡ 𝐺 ‘ 𝑥 )  ∈  V | 
						
							| 87 | 86 | epeli | ⊢ ( ∪  dom  𝐺  E  ( ◡ 𝐺 ‘ 𝑥 )  ↔  ∪  dom  𝐺  ∈  ( ◡ 𝐺 ‘ 𝑥 ) ) | 
						
							| 88 | 10 | breq1i | ⊢ ( 𝑊  E  ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) )  ↔  ( 𝐺 ‘ ∪  dom  𝐺 )  E  ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 89 |  | fvex | ⊢ ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) )  ∈  V | 
						
							| 90 | 89 | epeli | ⊢ ( 𝑊  E  ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) )  ↔  𝑊  ∈  ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 91 | 88 90 | bitr3i | ⊢ ( ( 𝐺 ‘ ∪  dom  𝐺 )  E  ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) )  ↔  𝑊  ∈  ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 92 | 85 87 91 | 3bitr3g | ⊢ ( ( ( 𝜑  ∧  𝑊  =  ∅ )  ∧  𝑥  ∈  ( 𝐹  supp  ∅ ) )  →  ( ∪  dom  𝐺  ∈  ( ◡ 𝐺 ‘ 𝑥 )  ↔  𝑊  ∈  ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 93 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑊  =  ∅ )  ∧  𝑥  ∈  ( 𝐹  supp  ∅ ) )  →  𝑊  =  ∅ ) | 
						
							| 94 |  | f1ocnvfv2 | ⊢ ( ( 𝐺 : dom  𝐺 –1-1-onto→ ( 𝐹  supp  ∅ )  ∧  𝑥  ∈  ( 𝐹  supp  ∅ ) )  →  ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) )  =  𝑥 ) | 
						
							| 95 | 68 94 | sylancom | ⊢ ( ( ( 𝜑  ∧  𝑊  =  ∅ )  ∧  𝑥  ∈  ( 𝐹  supp  ∅ ) )  →  ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) )  =  𝑥 ) | 
						
							| 96 | 93 95 | eleq12d | ⊢ ( ( ( 𝜑  ∧  𝑊  =  ∅ )  ∧  𝑥  ∈  ( 𝐹  supp  ∅ ) )  →  ( 𝑊  ∈  ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) )  ↔  ∅  ∈  𝑥 ) ) | 
						
							| 97 | 92 96 | bitrd | ⊢ ( ( ( 𝜑  ∧  𝑊  =  ∅ )  ∧  𝑥  ∈  ( 𝐹  supp  ∅ ) )  →  ( ∪  dom  𝐺  ∈  ( ◡ 𝐺 ‘ 𝑥 )  ↔  ∅  ∈  𝑥 ) ) | 
						
							| 98 | 82 97 | mtbid | ⊢ ( ( ( 𝜑  ∧  𝑊  =  ∅ )  ∧  𝑥  ∈  ( 𝐹  supp  ∅ ) )  →  ¬  ∅  ∈  𝑥 ) | 
						
							| 99 |  | onss | ⊢ ( 𝐴  ∈  On  →  𝐴  ⊆  On ) | 
						
							| 100 | 2 99 | syl | ⊢ ( 𝜑  →  𝐴  ⊆  On ) | 
						
							| 101 | 24 100 | sstrd | ⊢ ( 𝜑  →  ( 𝐹  supp  ∅ )  ⊆  On ) | 
						
							| 102 | 101 | adantr | ⊢ ( ( 𝜑  ∧  𝑊  =  ∅ )  →  ( 𝐹  supp  ∅ )  ⊆  On ) | 
						
							| 103 | 102 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑊  =  ∅ )  ∧  𝑥  ∈  ( 𝐹  supp  ∅ ) )  →  𝑥  ∈  On ) | 
						
							| 104 |  | on0eqel | ⊢ ( 𝑥  ∈  On  →  ( 𝑥  =  ∅  ∨  ∅  ∈  𝑥 ) ) | 
						
							| 105 | 103 104 | syl | ⊢ ( ( ( 𝜑  ∧  𝑊  =  ∅ )  ∧  𝑥  ∈  ( 𝐹  supp  ∅ ) )  →  ( 𝑥  =  ∅  ∨  ∅  ∈  𝑥 ) ) | 
						
							| 106 | 105 | ord | ⊢ ( ( ( 𝜑  ∧  𝑊  =  ∅ )  ∧  𝑥  ∈  ( 𝐹  supp  ∅ ) )  →  ( ¬  𝑥  =  ∅  →  ∅  ∈  𝑥 ) ) | 
						
							| 107 | 98 106 | mt3d | ⊢ ( ( ( 𝜑  ∧  𝑊  =  ∅ )  ∧  𝑥  ∈  ( 𝐹  supp  ∅ ) )  →  𝑥  =  ∅ ) | 
						
							| 108 |  | el1o | ⊢ ( 𝑥  ∈  1o  ↔  𝑥  =  ∅ ) | 
						
							| 109 | 107 108 | sylibr | ⊢ ( ( ( 𝜑  ∧  𝑊  =  ∅ )  ∧  𝑥  ∈  ( 𝐹  supp  ∅ ) )  →  𝑥  ∈  1o ) | 
						
							| 110 | 109 | ex | ⊢ ( ( 𝜑  ∧  𝑊  =  ∅ )  →  ( 𝑥  ∈  ( 𝐹  supp  ∅ )  →  𝑥  ∈  1o ) ) | 
						
							| 111 | 110 | ssrdv | ⊢ ( ( 𝜑  ∧  𝑊  =  ∅ )  →  ( 𝐹  supp  ∅ )  ⊆  1o ) | 
						
							| 112 | 1 55 56 57 58 60 111 | cantnflt2 | ⊢ ( ( 𝜑  ∧  𝑊  =  ∅ )  →  ( ( ω  CNF  𝐴 ) ‘ 𝐹 )  ∈  ( ω  ↑o  1o ) ) | 
						
							| 113 |  | oe1 | ⊢ ( ω  ∈  On  →  ( ω  ↑o  1o )  =  ω ) | 
						
							| 114 | 13 113 | ax-mp | ⊢ ( ω  ↑o  1o )  =  ω | 
						
							| 115 | 112 114 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑊  =  ∅ )  →  ( ( ω  CNF  𝐴 ) ‘ 𝐹 )  ∈  ω ) | 
						
							| 116 | 54 115 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑊  =  ∅ )  →  𝐵  ∈  ω ) | 
						
							| 117 | 116 | ex | ⊢ ( 𝜑  →  ( 𝑊  =  ∅  →  𝐵  ∈  ω ) ) | 
						
							| 118 | 117 | necon3bd | ⊢ ( 𝜑  →  ( ¬  𝐵  ∈  ω  →  𝑊  ≠  ∅ ) ) | 
						
							| 119 | 49 118 | mpd | ⊢ ( 𝜑  →  𝑊  ≠  ∅ ) | 
						
							| 120 |  | dif1o | ⊢ ( 𝑊  ∈  ( On  ∖  1o )  ↔  ( 𝑊  ∈  On  ∧  𝑊  ≠  ∅ ) ) | 
						
							| 121 | 42 119 120 | sylanbrc | ⊢ ( 𝜑  →  𝑊  ∈  ( On  ∖  1o ) ) |