Step |
Hyp |
Ref |
Expression |
1 |
|
cnfcom.s |
⊢ 𝑆 = dom ( ω CNF 𝐴 ) |
2 |
|
cnfcom.a |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
3 |
|
cnfcom.b |
⊢ ( 𝜑 → 𝐵 ∈ ( ω ↑o 𝐴 ) ) |
4 |
|
cnfcom.f |
⊢ 𝐹 = ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) |
5 |
|
cnfcom.g |
⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) |
6 |
|
cnfcom.h |
⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) , ∅ ) |
7 |
|
cnfcom.t |
⊢ 𝑇 = seqω ( ( 𝑘 ∈ V , 𝑓 ∈ V ↦ 𝐾 ) , ∅ ) |
8 |
|
cnfcom.m |
⊢ 𝑀 = ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
9 |
|
cnfcom.k |
⊢ 𝐾 = ( ( 𝑥 ∈ 𝑀 ↦ ( dom 𝑓 +o 𝑥 ) ) ∪ ◡ ( 𝑥 ∈ dom 𝑓 ↦ ( 𝑀 +o 𝑥 ) ) ) |
10 |
|
cnfcom.w |
⊢ 𝑊 = ( 𝐺 ‘ ∪ dom 𝐺 ) |
11 |
|
cnfcom3.1 |
⊢ ( 𝜑 → ω ⊆ 𝐵 ) |
12 |
|
suppssdm |
⊢ ( 𝐹 supp ∅ ) ⊆ dom 𝐹 |
13 |
|
omelon |
⊢ ω ∈ On |
14 |
13
|
a1i |
⊢ ( 𝜑 → ω ∈ On ) |
15 |
1 14 2
|
cantnff1o |
⊢ ( 𝜑 → ( ω CNF 𝐴 ) : 𝑆 –1-1-onto→ ( ω ↑o 𝐴 ) ) |
16 |
|
f1ocnv |
⊢ ( ( ω CNF 𝐴 ) : 𝑆 –1-1-onto→ ( ω ↑o 𝐴 ) → ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) –1-1-onto→ 𝑆 ) |
17 |
|
f1of |
⊢ ( ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) –1-1-onto→ 𝑆 → ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) ⟶ 𝑆 ) |
18 |
15 16 17
|
3syl |
⊢ ( 𝜑 → ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) ⟶ 𝑆 ) |
19 |
18 3
|
ffvelrnd |
⊢ ( 𝜑 → ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) ∈ 𝑆 ) |
20 |
4 19
|
eqeltrid |
⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
21 |
1 14 2
|
cantnfs |
⊢ ( 𝜑 → ( 𝐹 ∈ 𝑆 ↔ ( 𝐹 : 𝐴 ⟶ ω ∧ 𝐹 finSupp ∅ ) ) ) |
22 |
20 21
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ ω ∧ 𝐹 finSupp ∅ ) ) |
23 |
22
|
simpld |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ω ) |
24 |
12 23
|
fssdm |
⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ 𝐴 ) |
25 |
|
ovex |
⊢ ( 𝐹 supp ∅ ) ∈ V |
26 |
5
|
oion |
⊢ ( ( 𝐹 supp ∅ ) ∈ V → dom 𝐺 ∈ On ) |
27 |
25 26
|
ax-mp |
⊢ dom 𝐺 ∈ On |
28 |
27
|
elexi |
⊢ dom 𝐺 ∈ V |
29 |
28
|
uniex |
⊢ ∪ dom 𝐺 ∈ V |
30 |
29
|
sucid |
⊢ ∪ dom 𝐺 ∈ suc ∪ dom 𝐺 |
31 |
|
peano1 |
⊢ ∅ ∈ ω |
32 |
31
|
a1i |
⊢ ( 𝜑 → ∅ ∈ ω ) |
33 |
11 32
|
sseldd |
⊢ ( 𝜑 → ∅ ∈ 𝐵 ) |
34 |
1 2 3 4 5 6 7 8 9 10 33
|
cnfcom2lem |
⊢ ( 𝜑 → dom 𝐺 = suc ∪ dom 𝐺 ) |
35 |
30 34
|
eleqtrrid |
⊢ ( 𝜑 → ∪ dom 𝐺 ∈ dom 𝐺 ) |
36 |
5
|
oif |
⊢ 𝐺 : dom 𝐺 ⟶ ( 𝐹 supp ∅ ) |
37 |
36
|
ffvelrni |
⊢ ( ∪ dom 𝐺 ∈ dom 𝐺 → ( 𝐺 ‘ ∪ dom 𝐺 ) ∈ ( 𝐹 supp ∅ ) ) |
38 |
35 37
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ ∪ dom 𝐺 ) ∈ ( 𝐹 supp ∅ ) ) |
39 |
24 38
|
sseldd |
⊢ ( 𝜑 → ( 𝐺 ‘ ∪ dom 𝐺 ) ∈ 𝐴 ) |
40 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐺 ‘ ∪ dom 𝐺 ) ∈ 𝐴 ) → ( 𝐺 ‘ ∪ dom 𝐺 ) ∈ On ) |
41 |
2 39 40
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ‘ ∪ dom 𝐺 ) ∈ On ) |
42 |
10 41
|
eqeltrid |
⊢ ( 𝜑 → 𝑊 ∈ On ) |
43 |
|
oecl |
⊢ ( ( ω ∈ On ∧ 𝐴 ∈ On ) → ( ω ↑o 𝐴 ) ∈ On ) |
44 |
13 2 43
|
sylancr |
⊢ ( 𝜑 → ( ω ↑o 𝐴 ) ∈ On ) |
45 |
|
onelon |
⊢ ( ( ( ω ↑o 𝐴 ) ∈ On ∧ 𝐵 ∈ ( ω ↑o 𝐴 ) ) → 𝐵 ∈ On ) |
46 |
44 3 45
|
syl2anc |
⊢ ( 𝜑 → 𝐵 ∈ On ) |
47 |
|
ontri1 |
⊢ ( ( ω ∈ On ∧ 𝐵 ∈ On ) → ( ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω ) ) |
48 |
13 46 47
|
sylancr |
⊢ ( 𝜑 → ( ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω ) ) |
49 |
11 48
|
mpbid |
⊢ ( 𝜑 → ¬ 𝐵 ∈ ω ) |
50 |
4
|
fveq2i |
⊢ ( ( ω CNF 𝐴 ) ‘ 𝐹 ) = ( ( ω CNF 𝐴 ) ‘ ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) ) |
51 |
|
f1ocnvfv2 |
⊢ ( ( ( ω CNF 𝐴 ) : 𝑆 –1-1-onto→ ( ω ↑o 𝐴 ) ∧ 𝐵 ∈ ( ω ↑o 𝐴 ) ) → ( ( ω CNF 𝐴 ) ‘ ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) ) = 𝐵 ) |
52 |
15 3 51
|
syl2anc |
⊢ ( 𝜑 → ( ( ω CNF 𝐴 ) ‘ ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) ) = 𝐵 ) |
53 |
50 52
|
eqtrid |
⊢ ( 𝜑 → ( ( ω CNF 𝐴 ) ‘ 𝐹 ) = 𝐵 ) |
54 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( ( ω CNF 𝐴 ) ‘ 𝐹 ) = 𝐵 ) |
55 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ω ∈ On ) |
56 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → 𝐴 ∈ On ) |
57 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → 𝐹 ∈ 𝑆 ) |
58 |
31
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ∅ ∈ ω ) |
59 |
|
1on |
⊢ 1o ∈ On |
60 |
59
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → 1o ∈ On ) |
61 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ∈ V ) |
62 |
1 14 2 5 20
|
cantnfcl |
⊢ ( 𝜑 → ( E We ( 𝐹 supp ∅ ) ∧ dom 𝐺 ∈ ω ) ) |
63 |
62
|
simpld |
⊢ ( 𝜑 → E We ( 𝐹 supp ∅ ) ) |
64 |
5
|
oiiso |
⊢ ( ( ( 𝐹 supp ∅ ) ∈ V ∧ E We ( 𝐹 supp ∅ ) ) → 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ) |
65 |
61 63 64
|
syl2anc |
⊢ ( 𝜑 → 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ) |
66 |
65
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ) |
67 |
|
isof1o |
⊢ ( 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) → 𝐺 : dom 𝐺 –1-1-onto→ ( 𝐹 supp ∅ ) ) |
68 |
66 67
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → 𝐺 : dom 𝐺 –1-1-onto→ ( 𝐹 supp ∅ ) ) |
69 |
|
f1ocnv |
⊢ ( 𝐺 : dom 𝐺 –1-1-onto→ ( 𝐹 supp ∅ ) → ◡ 𝐺 : ( 𝐹 supp ∅ ) –1-1-onto→ dom 𝐺 ) |
70 |
|
f1of |
⊢ ( ◡ 𝐺 : ( 𝐹 supp ∅ ) –1-1-onto→ dom 𝐺 → ◡ 𝐺 : ( 𝐹 supp ∅ ) ⟶ dom 𝐺 ) |
71 |
68 69 70
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ◡ 𝐺 : ( 𝐹 supp ∅ ) ⟶ dom 𝐺 ) |
72 |
|
ffvelrn |
⊢ ( ( ◡ 𝐺 : ( 𝐹 supp ∅ ) ⟶ dom 𝐺 ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ( ◡ 𝐺 ‘ 𝑥 ) ∈ dom 𝐺 ) |
73 |
71 72
|
sylancom |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ( ◡ 𝐺 ‘ 𝑥 ) ∈ dom 𝐺 ) |
74 |
|
elssuni |
⊢ ( ( ◡ 𝐺 ‘ 𝑥 ) ∈ dom 𝐺 → ( ◡ 𝐺 ‘ 𝑥 ) ⊆ ∪ dom 𝐺 ) |
75 |
73 74
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ( ◡ 𝐺 ‘ 𝑥 ) ⊆ ∪ dom 𝐺 ) |
76 |
|
onelon |
⊢ ( ( dom 𝐺 ∈ On ∧ ( ◡ 𝐺 ‘ 𝑥 ) ∈ dom 𝐺 ) → ( ◡ 𝐺 ‘ 𝑥 ) ∈ On ) |
77 |
27 73 76
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ( ◡ 𝐺 ‘ 𝑥 ) ∈ On ) |
78 |
|
onuni |
⊢ ( dom 𝐺 ∈ On → ∪ dom 𝐺 ∈ On ) |
79 |
27 78
|
ax-mp |
⊢ ∪ dom 𝐺 ∈ On |
80 |
|
ontri1 |
⊢ ( ( ( ◡ 𝐺 ‘ 𝑥 ) ∈ On ∧ ∪ dom 𝐺 ∈ On ) → ( ( ◡ 𝐺 ‘ 𝑥 ) ⊆ ∪ dom 𝐺 ↔ ¬ ∪ dom 𝐺 ∈ ( ◡ 𝐺 ‘ 𝑥 ) ) ) |
81 |
77 79 80
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ( ( ◡ 𝐺 ‘ 𝑥 ) ⊆ ∪ dom 𝐺 ↔ ¬ ∪ dom 𝐺 ∈ ( ◡ 𝐺 ‘ 𝑥 ) ) ) |
82 |
75 81
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ¬ ∪ dom 𝐺 ∈ ( ◡ 𝐺 ‘ 𝑥 ) ) |
83 |
35
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ∪ dom 𝐺 ∈ dom 𝐺 ) |
84 |
|
isorel |
⊢ ( ( 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ∧ ( ∪ dom 𝐺 ∈ dom 𝐺 ∧ ( ◡ 𝐺 ‘ 𝑥 ) ∈ dom 𝐺 ) ) → ( ∪ dom 𝐺 E ( ◡ 𝐺 ‘ 𝑥 ) ↔ ( 𝐺 ‘ ∪ dom 𝐺 ) E ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) ) |
85 |
66 83 73 84
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ( ∪ dom 𝐺 E ( ◡ 𝐺 ‘ 𝑥 ) ↔ ( 𝐺 ‘ ∪ dom 𝐺 ) E ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) ) |
86 |
|
fvex |
⊢ ( ◡ 𝐺 ‘ 𝑥 ) ∈ V |
87 |
86
|
epeli |
⊢ ( ∪ dom 𝐺 E ( ◡ 𝐺 ‘ 𝑥 ) ↔ ∪ dom 𝐺 ∈ ( ◡ 𝐺 ‘ 𝑥 ) ) |
88 |
10
|
breq1i |
⊢ ( 𝑊 E ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ↔ ( 𝐺 ‘ ∪ dom 𝐺 ) E ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) |
89 |
|
fvex |
⊢ ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ∈ V |
90 |
89
|
epeli |
⊢ ( 𝑊 E ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ↔ 𝑊 ∈ ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) |
91 |
88 90
|
bitr3i |
⊢ ( ( 𝐺 ‘ ∪ dom 𝐺 ) E ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ↔ 𝑊 ∈ ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) |
92 |
85 87 91
|
3bitr3g |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ( ∪ dom 𝐺 ∈ ( ◡ 𝐺 ‘ 𝑥 ) ↔ 𝑊 ∈ ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ) ) |
93 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → 𝑊 = ∅ ) |
94 |
|
f1ocnvfv2 |
⊢ ( ( 𝐺 : dom 𝐺 –1-1-onto→ ( 𝐹 supp ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) = 𝑥 ) |
95 |
68 94
|
sylancom |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) = 𝑥 ) |
96 |
93 95
|
eleq12d |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ( 𝑊 ∈ ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑥 ) ) ↔ ∅ ∈ 𝑥 ) ) |
97 |
92 96
|
bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ( ∪ dom 𝐺 ∈ ( ◡ 𝐺 ‘ 𝑥 ) ↔ ∅ ∈ 𝑥 ) ) |
98 |
82 97
|
mtbid |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ¬ ∅ ∈ 𝑥 ) |
99 |
|
onss |
⊢ ( 𝐴 ∈ On → 𝐴 ⊆ On ) |
100 |
2 99
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ On ) |
101 |
24 100
|
sstrd |
⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ On ) |
102 |
101
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( 𝐹 supp ∅ ) ⊆ On ) |
103 |
102
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → 𝑥 ∈ On ) |
104 |
|
on0eqel |
⊢ ( 𝑥 ∈ On → ( 𝑥 = ∅ ∨ ∅ ∈ 𝑥 ) ) |
105 |
103 104
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ( 𝑥 = ∅ ∨ ∅ ∈ 𝑥 ) ) |
106 |
105
|
ord |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → ( ¬ 𝑥 = ∅ → ∅ ∈ 𝑥 ) ) |
107 |
98 106
|
mt3d |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → 𝑥 = ∅ ) |
108 |
|
el1o |
⊢ ( 𝑥 ∈ 1o ↔ 𝑥 = ∅ ) |
109 |
107 108
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 𝐹 supp ∅ ) ) → 𝑥 ∈ 1o ) |
110 |
109
|
ex |
⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( 𝑥 ∈ ( 𝐹 supp ∅ ) → 𝑥 ∈ 1o ) ) |
111 |
110
|
ssrdv |
⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( 𝐹 supp ∅ ) ⊆ 1o ) |
112 |
1 55 56 57 58 60 111
|
cantnflt2 |
⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( ( ω CNF 𝐴 ) ‘ 𝐹 ) ∈ ( ω ↑o 1o ) ) |
113 |
|
oe1 |
⊢ ( ω ∈ On → ( ω ↑o 1o ) = ω ) |
114 |
13 113
|
ax-mp |
⊢ ( ω ↑o 1o ) = ω |
115 |
112 114
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( ( ω CNF 𝐴 ) ‘ 𝐹 ) ∈ ω ) |
116 |
54 115
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → 𝐵 ∈ ω ) |
117 |
116
|
ex |
⊢ ( 𝜑 → ( 𝑊 = ∅ → 𝐵 ∈ ω ) ) |
118 |
117
|
necon3bd |
⊢ ( 𝜑 → ( ¬ 𝐵 ∈ ω → 𝑊 ≠ ∅ ) ) |
119 |
49 118
|
mpd |
⊢ ( 𝜑 → 𝑊 ≠ ∅ ) |
120 |
|
dif1o |
⊢ ( 𝑊 ∈ ( On ∖ 1o ) ↔ ( 𝑊 ∈ On ∧ 𝑊 ≠ ∅ ) ) |
121 |
42 119 120
|
sylanbrc |
⊢ ( 𝜑 → 𝑊 ∈ ( On ∖ 1o ) ) |