| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnfcom.s | ⊢ 𝑆  =  dom  ( ω  CNF  𝐴 ) | 
						
							| 2 |  | cnfcom.a | ⊢ ( 𝜑  →  𝐴  ∈  On ) | 
						
							| 3 |  | cnfcom.b | ⊢ ( 𝜑  →  𝐵  ∈  ( ω  ↑o  𝐴 ) ) | 
						
							| 4 |  | cnfcom.f | ⊢ 𝐹  =  ( ◡ ( ω  CNF  𝐴 ) ‘ 𝐵 ) | 
						
							| 5 |  | cnfcom.g | ⊢ 𝐺  =  OrdIso (  E  ,  ( 𝐹  supp  ∅ ) ) | 
						
							| 6 |  | cnfcom.h | ⊢ 𝐻  =  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( 𝑀  +o  𝑧 ) ) ,  ∅ ) | 
						
							| 7 |  | cnfcom.t | ⊢ 𝑇  =  seqω ( ( 𝑘  ∈  V ,  𝑓  ∈  V  ↦  𝐾 ) ,  ∅ ) | 
						
							| 8 |  | cnfcom.m | ⊢ 𝑀  =  ( ( ω  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 9 |  | cnfcom.k | ⊢ 𝐾  =  ( ( 𝑥  ∈  𝑀  ↦  ( dom  𝑓  +o  𝑥 ) )  ∪  ◡ ( 𝑥  ∈  dom  𝑓  ↦  ( 𝑀  +o  𝑥 ) ) ) | 
						
							| 10 |  | cnfcom.1 | ⊢ ( 𝜑  →  𝐼  ∈  dom  𝐺 ) | 
						
							| 11 |  | cnfcom.2 | ⊢ ( 𝜑  →  𝑂  ∈  ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) ) ) | 
						
							| 12 |  | cnfcom.3 | ⊢ ( 𝜑  →  ( 𝑇 ‘ 𝐼 ) : ( 𝐻 ‘ 𝐼 ) –1-1-onto→ 𝑂 ) | 
						
							| 13 |  | omelon | ⊢ ω  ∈  On | 
						
							| 14 |  | suppssdm | ⊢ ( 𝐹  supp  ∅ )  ⊆  dom  𝐹 | 
						
							| 15 | 13 | a1i | ⊢ ( 𝜑  →  ω  ∈  On ) | 
						
							| 16 | 1 15 2 | cantnff1o | ⊢ ( 𝜑  →  ( ω  CNF  𝐴 ) : 𝑆 –1-1-onto→ ( ω  ↑o  𝐴 ) ) | 
						
							| 17 |  | f1ocnv | ⊢ ( ( ω  CNF  𝐴 ) : 𝑆 –1-1-onto→ ( ω  ↑o  𝐴 )  →  ◡ ( ω  CNF  𝐴 ) : ( ω  ↑o  𝐴 ) –1-1-onto→ 𝑆 ) | 
						
							| 18 |  | f1of | ⊢ ( ◡ ( ω  CNF  𝐴 ) : ( ω  ↑o  𝐴 ) –1-1-onto→ 𝑆  →  ◡ ( ω  CNF  𝐴 ) : ( ω  ↑o  𝐴 ) ⟶ 𝑆 ) | 
						
							| 19 | 16 17 18 | 3syl | ⊢ ( 𝜑  →  ◡ ( ω  CNF  𝐴 ) : ( ω  ↑o  𝐴 ) ⟶ 𝑆 ) | 
						
							| 20 | 19 3 | ffvelcdmd | ⊢ ( 𝜑  →  ( ◡ ( ω  CNF  𝐴 ) ‘ 𝐵 )  ∈  𝑆 ) | 
						
							| 21 | 4 20 | eqeltrid | ⊢ ( 𝜑  →  𝐹  ∈  𝑆 ) | 
						
							| 22 | 1 15 2 | cantnfs | ⊢ ( 𝜑  →  ( 𝐹  ∈  𝑆  ↔  ( 𝐹 : 𝐴 ⟶ ω  ∧  𝐹  finSupp  ∅ ) ) ) | 
						
							| 23 | 21 22 | mpbid | ⊢ ( 𝜑  →  ( 𝐹 : 𝐴 ⟶ ω  ∧  𝐹  finSupp  ∅ ) ) | 
						
							| 24 | 23 | simpld | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ω ) | 
						
							| 25 | 14 24 | fssdm | ⊢ ( 𝜑  →  ( 𝐹  supp  ∅ )  ⊆  𝐴 ) | 
						
							| 26 | 5 | oif | ⊢ 𝐺 : dom  𝐺 ⟶ ( 𝐹  supp  ∅ ) | 
						
							| 27 | 26 | ffvelcdmi | ⊢ ( 𝐼  ∈  dom  𝐺  →  ( 𝐺 ‘ 𝐼 )  ∈  ( 𝐹  supp  ∅ ) ) | 
						
							| 28 | 10 27 | syl | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝐼 )  ∈  ( 𝐹  supp  ∅ ) ) | 
						
							| 29 | 25 28 | sseldd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝐼 )  ∈  𝐴 ) | 
						
							| 30 |  | onelon | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝐺 ‘ 𝐼 )  ∈  𝐴 )  →  ( 𝐺 ‘ 𝐼 )  ∈  On ) | 
						
							| 31 | 2 29 30 | syl2anc | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝐼 )  ∈  On ) | 
						
							| 32 |  | oecl | ⊢ ( ( ω  ∈  On  ∧  ( 𝐺 ‘ 𝐼 )  ∈  On )  →  ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ∈  On ) | 
						
							| 33 | 13 31 32 | sylancr | ⊢ ( 𝜑  →  ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ∈  On ) | 
						
							| 34 | 24 29 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) )  ∈  ω ) | 
						
							| 35 |  | nnon | ⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) )  ∈  ω  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) )  ∈  On ) | 
						
							| 36 | 34 35 | syl | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) )  ∈  On ) | 
						
							| 37 |  | omcl | ⊢ ( ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ∈  On  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) )  ∈  On )  →  ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  ∈  On ) | 
						
							| 38 | 33 36 37 | syl2anc | ⊢ ( 𝜑  →  ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  ∈  On ) | 
						
							| 39 | 1 15 2 5 21 | cantnfcl | ⊢ ( 𝜑  →  (  E   We  ( 𝐹  supp  ∅ )  ∧  dom  𝐺  ∈  ω ) ) | 
						
							| 40 | 39 | simprd | ⊢ ( 𝜑  →  dom  𝐺  ∈  ω ) | 
						
							| 41 |  | elnn | ⊢ ( ( 𝐼  ∈  dom  𝐺  ∧  dom  𝐺  ∈  ω )  →  𝐼  ∈  ω ) | 
						
							| 42 | 10 40 41 | syl2anc | ⊢ ( 𝜑  →  𝐼  ∈  ω ) | 
						
							| 43 | 6 | cantnfvalf | ⊢ 𝐻 : ω ⟶ On | 
						
							| 44 | 43 | ffvelcdmi | ⊢ ( 𝐼  ∈  ω  →  ( 𝐻 ‘ 𝐼 )  ∈  On ) | 
						
							| 45 | 42 44 | syl | ⊢ ( 𝜑  →  ( 𝐻 ‘ 𝐼 )  ∈  On ) | 
						
							| 46 |  | eqid | ⊢ ( ( 𝑦  ∈  ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  ↦  ( ( 𝐻 ‘ 𝐼 )  +o  𝑦 ) )  ∪  ◡ ( 𝑦  ∈  ( 𝐻 ‘ 𝐼 )  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  +o  𝑦 ) ) )  =  ( ( 𝑦  ∈  ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  ↦  ( ( 𝐻 ‘ 𝐼 )  +o  𝑦 ) )  ∪  ◡ ( 𝑦  ∈  ( 𝐻 ‘ 𝐼 )  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  +o  𝑦 ) ) ) | 
						
							| 47 | 46 | oacomf1o | ⊢ ( ( ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  ∈  On  ∧  ( 𝐻 ‘ 𝐼 )  ∈  On )  →  ( ( 𝑦  ∈  ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  ↦  ( ( 𝐻 ‘ 𝐼 )  +o  𝑦 ) )  ∪  ◡ ( 𝑦  ∈  ( 𝐻 ‘ 𝐼 )  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  +o  𝑦 ) ) ) : ( ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  +o  ( 𝐻 ‘ 𝐼 ) ) –1-1-onto→ ( ( 𝐻 ‘ 𝐼 )  +o  ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) | 
						
							| 48 | 38 45 47 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  ↦  ( ( 𝐻 ‘ 𝐼 )  +o  𝑦 ) )  ∪  ◡ ( 𝑦  ∈  ( 𝐻 ‘ 𝐼 )  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  +o  𝑦 ) ) ) : ( ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  +o  ( 𝐻 ‘ 𝐼 ) ) –1-1-onto→ ( ( 𝐻 ‘ 𝐼 )  +o  ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) | 
						
							| 49 | 7 | seqomsuc | ⊢ ( 𝐼  ∈  ω  →  ( 𝑇 ‘ suc  𝐼 )  =  ( 𝐼 ( 𝑘  ∈  V ,  𝑓  ∈  V  ↦  𝐾 ) ( 𝑇 ‘ 𝐼 ) ) ) | 
						
							| 50 | 42 49 | syl | ⊢ ( 𝜑  →  ( 𝑇 ‘ suc  𝐼 )  =  ( 𝐼 ( 𝑘  ∈  V ,  𝑓  ∈  V  ↦  𝐾 ) ( 𝑇 ‘ 𝐼 ) ) ) | 
						
							| 51 |  | nfcv | ⊢ Ⅎ 𝑢 𝐾 | 
						
							| 52 |  | nfcv | ⊢ Ⅎ 𝑣 𝐾 | 
						
							| 53 |  | nfcv | ⊢ Ⅎ 𝑘 ( ( 𝑦  ∈  ( ( ω  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) )  ↦  ( dom  𝑣  +o  𝑦 ) )  ∪  ◡ ( 𝑦  ∈  dom  𝑣  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) )  +o  𝑦 ) ) ) | 
						
							| 54 |  | nfcv | ⊢ Ⅎ 𝑓 ( ( 𝑦  ∈  ( ( ω  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) )  ↦  ( dom  𝑣  +o  𝑦 ) )  ∪  ◡ ( 𝑦  ∈  dom  𝑣  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) )  +o  𝑦 ) ) ) | 
						
							| 55 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( dom  𝑓  +o  𝑥 )  =  ( dom  𝑓  +o  𝑦 ) ) | 
						
							| 56 | 55 | cbvmptv | ⊢ ( 𝑥  ∈  𝑀  ↦  ( dom  𝑓  +o  𝑥 ) )  =  ( 𝑦  ∈  𝑀  ↦  ( dom  𝑓  +o  𝑦 ) ) | 
						
							| 57 |  | simpl | ⊢ ( ( 𝑘  =  𝑢  ∧  𝑓  =  𝑣 )  →  𝑘  =  𝑢 ) | 
						
							| 58 | 57 | fveq2d | ⊢ ( ( 𝑘  =  𝑢  ∧  𝑓  =  𝑣 )  →  ( 𝐺 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑢 ) ) | 
						
							| 59 | 58 | oveq2d | ⊢ ( ( 𝑘  =  𝑢  ∧  𝑓  =  𝑣 )  →  ( ω  ↑o  ( 𝐺 ‘ 𝑘 ) )  =  ( ω  ↑o  ( 𝐺 ‘ 𝑢 ) ) ) | 
						
							| 60 | 58 | fveq2d | ⊢ ( ( 𝑘  =  𝑢  ∧  𝑓  =  𝑣 )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) | 
						
							| 61 | 59 60 | oveq12d | ⊢ ( ( 𝑘  =  𝑢  ∧  𝑓  =  𝑣 )  →  ( ( ω  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  =  ( ( ω  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) ) | 
						
							| 62 | 8 61 | eqtrid | ⊢ ( ( 𝑘  =  𝑢  ∧  𝑓  =  𝑣 )  →  𝑀  =  ( ( ω  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) ) | 
						
							| 63 |  | simpr | ⊢ ( ( 𝑘  =  𝑢  ∧  𝑓  =  𝑣 )  →  𝑓  =  𝑣 ) | 
						
							| 64 | 63 | dmeqd | ⊢ ( ( 𝑘  =  𝑢  ∧  𝑓  =  𝑣 )  →  dom  𝑓  =  dom  𝑣 ) | 
						
							| 65 | 64 | oveq1d | ⊢ ( ( 𝑘  =  𝑢  ∧  𝑓  =  𝑣 )  →  ( dom  𝑓  +o  𝑦 )  =  ( dom  𝑣  +o  𝑦 ) ) | 
						
							| 66 | 62 65 | mpteq12dv | ⊢ ( ( 𝑘  =  𝑢  ∧  𝑓  =  𝑣 )  →  ( 𝑦  ∈  𝑀  ↦  ( dom  𝑓  +o  𝑦 ) )  =  ( 𝑦  ∈  ( ( ω  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) )  ↦  ( dom  𝑣  +o  𝑦 ) ) ) | 
						
							| 67 | 56 66 | eqtrid | ⊢ ( ( 𝑘  =  𝑢  ∧  𝑓  =  𝑣 )  →  ( 𝑥  ∈  𝑀  ↦  ( dom  𝑓  +o  𝑥 ) )  =  ( 𝑦  ∈  ( ( ω  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) )  ↦  ( dom  𝑣  +o  𝑦 ) ) ) | 
						
							| 68 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑀  +o  𝑥 )  =  ( 𝑀  +o  𝑦 ) ) | 
						
							| 69 | 68 | cbvmptv | ⊢ ( 𝑥  ∈  dom  𝑓  ↦  ( 𝑀  +o  𝑥 ) )  =  ( 𝑦  ∈  dom  𝑓  ↦  ( 𝑀  +o  𝑦 ) ) | 
						
							| 70 | 62 | oveq1d | ⊢ ( ( 𝑘  =  𝑢  ∧  𝑓  =  𝑣 )  →  ( 𝑀  +o  𝑦 )  =  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) )  +o  𝑦 ) ) | 
						
							| 71 | 64 70 | mpteq12dv | ⊢ ( ( 𝑘  =  𝑢  ∧  𝑓  =  𝑣 )  →  ( 𝑦  ∈  dom  𝑓  ↦  ( 𝑀  +o  𝑦 ) )  =  ( 𝑦  ∈  dom  𝑣  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) )  +o  𝑦 ) ) ) | 
						
							| 72 | 69 71 | eqtrid | ⊢ ( ( 𝑘  =  𝑢  ∧  𝑓  =  𝑣 )  →  ( 𝑥  ∈  dom  𝑓  ↦  ( 𝑀  +o  𝑥 ) )  =  ( 𝑦  ∈  dom  𝑣  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) )  +o  𝑦 ) ) ) | 
						
							| 73 | 72 | cnveqd | ⊢ ( ( 𝑘  =  𝑢  ∧  𝑓  =  𝑣 )  →  ◡ ( 𝑥  ∈  dom  𝑓  ↦  ( 𝑀  +o  𝑥 ) )  =  ◡ ( 𝑦  ∈  dom  𝑣  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) )  +o  𝑦 ) ) ) | 
						
							| 74 | 67 73 | uneq12d | ⊢ ( ( 𝑘  =  𝑢  ∧  𝑓  =  𝑣 )  →  ( ( 𝑥  ∈  𝑀  ↦  ( dom  𝑓  +o  𝑥 ) )  ∪  ◡ ( 𝑥  ∈  dom  𝑓  ↦  ( 𝑀  +o  𝑥 ) ) )  =  ( ( 𝑦  ∈  ( ( ω  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) )  ↦  ( dom  𝑣  +o  𝑦 ) )  ∪  ◡ ( 𝑦  ∈  dom  𝑣  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) )  +o  𝑦 ) ) ) ) | 
						
							| 75 | 9 74 | eqtrid | ⊢ ( ( 𝑘  =  𝑢  ∧  𝑓  =  𝑣 )  →  𝐾  =  ( ( 𝑦  ∈  ( ( ω  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) )  ↦  ( dom  𝑣  +o  𝑦 ) )  ∪  ◡ ( 𝑦  ∈  dom  𝑣  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) )  +o  𝑦 ) ) ) ) | 
						
							| 76 | 51 52 53 54 75 | cbvmpo | ⊢ ( 𝑘  ∈  V ,  𝑓  ∈  V  ↦  𝐾 )  =  ( 𝑢  ∈  V ,  𝑣  ∈  V  ↦  ( ( 𝑦  ∈  ( ( ω  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) )  ↦  ( dom  𝑣  +o  𝑦 ) )  ∪  ◡ ( 𝑦  ∈  dom  𝑣  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) )  +o  𝑦 ) ) ) ) | 
						
							| 77 | 76 | a1i | ⊢ ( 𝜑  →  ( 𝑘  ∈  V ,  𝑓  ∈  V  ↦  𝐾 )  =  ( 𝑢  ∈  V ,  𝑣  ∈  V  ↦  ( ( 𝑦  ∈  ( ( ω  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) )  ↦  ( dom  𝑣  +o  𝑦 ) )  ∪  ◡ ( 𝑦  ∈  dom  𝑣  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) )  +o  𝑦 ) ) ) ) ) | 
						
							| 78 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑢  =  𝐼  ∧  𝑣  =  ( 𝑇 ‘ 𝐼 ) ) )  →  𝑢  =  𝐼 ) | 
						
							| 79 | 78 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑢  =  𝐼  ∧  𝑣  =  ( 𝑇 ‘ 𝐼 ) ) )  →  ( 𝐺 ‘ 𝑢 )  =  ( 𝐺 ‘ 𝐼 ) ) | 
						
							| 80 | 79 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑢  =  𝐼  ∧  𝑣  =  ( 𝑇 ‘ 𝐼 ) ) )  →  ( ω  ↑o  ( 𝐺 ‘ 𝑢 ) )  =  ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) ) ) | 
						
							| 81 | 79 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑢  =  𝐼  ∧  𝑣  =  ( 𝑇 ‘ 𝐼 ) ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) | 
						
							| 82 | 80 81 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑢  =  𝐼  ∧  𝑣  =  ( 𝑇 ‘ 𝐼 ) ) )  →  ( ( ω  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) )  =  ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) | 
						
							| 83 |  | simpr | ⊢ ( ( 𝑢  =  𝐼  ∧  𝑣  =  ( 𝑇 ‘ 𝐼 ) )  →  𝑣  =  ( 𝑇 ‘ 𝐼 ) ) | 
						
							| 84 | 83 | dmeqd | ⊢ ( ( 𝑢  =  𝐼  ∧  𝑣  =  ( 𝑇 ‘ 𝐼 ) )  →  dom  𝑣  =  dom  ( 𝑇 ‘ 𝐼 ) ) | 
						
							| 85 |  | f1odm | ⊢ ( ( 𝑇 ‘ 𝐼 ) : ( 𝐻 ‘ 𝐼 ) –1-1-onto→ 𝑂  →  dom  ( 𝑇 ‘ 𝐼 )  =  ( 𝐻 ‘ 𝐼 ) ) | 
						
							| 86 | 12 85 | syl | ⊢ ( 𝜑  →  dom  ( 𝑇 ‘ 𝐼 )  =  ( 𝐻 ‘ 𝐼 ) ) | 
						
							| 87 | 84 86 | sylan9eqr | ⊢ ( ( 𝜑  ∧  ( 𝑢  =  𝐼  ∧  𝑣  =  ( 𝑇 ‘ 𝐼 ) ) )  →  dom  𝑣  =  ( 𝐻 ‘ 𝐼 ) ) | 
						
							| 88 | 87 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑢  =  𝐼  ∧  𝑣  =  ( 𝑇 ‘ 𝐼 ) ) )  →  ( dom  𝑣  +o  𝑦 )  =  ( ( 𝐻 ‘ 𝐼 )  +o  𝑦 ) ) | 
						
							| 89 | 82 88 | mpteq12dv | ⊢ ( ( 𝜑  ∧  ( 𝑢  =  𝐼  ∧  𝑣  =  ( 𝑇 ‘ 𝐼 ) ) )  →  ( 𝑦  ∈  ( ( ω  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) )  ↦  ( dom  𝑣  +o  𝑦 ) )  =  ( 𝑦  ∈  ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  ↦  ( ( 𝐻 ‘ 𝐼 )  +o  𝑦 ) ) ) | 
						
							| 90 | 82 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑢  =  𝐼  ∧  𝑣  =  ( 𝑇 ‘ 𝐼 ) ) )  →  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) )  +o  𝑦 )  =  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  +o  𝑦 ) ) | 
						
							| 91 | 87 90 | mpteq12dv | ⊢ ( ( 𝜑  ∧  ( 𝑢  =  𝐼  ∧  𝑣  =  ( 𝑇 ‘ 𝐼 ) ) )  →  ( 𝑦  ∈  dom  𝑣  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) )  +o  𝑦 ) )  =  ( 𝑦  ∈  ( 𝐻 ‘ 𝐼 )  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  +o  𝑦 ) ) ) | 
						
							| 92 | 91 | cnveqd | ⊢ ( ( 𝜑  ∧  ( 𝑢  =  𝐼  ∧  𝑣  =  ( 𝑇 ‘ 𝐼 ) ) )  →  ◡ ( 𝑦  ∈  dom  𝑣  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) )  +o  𝑦 ) )  =  ◡ ( 𝑦  ∈  ( 𝐻 ‘ 𝐼 )  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  +o  𝑦 ) ) ) | 
						
							| 93 | 89 92 | uneq12d | ⊢ ( ( 𝜑  ∧  ( 𝑢  =  𝐼  ∧  𝑣  =  ( 𝑇 ‘ 𝐼 ) ) )  →  ( ( 𝑦  ∈  ( ( ω  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) )  ↦  ( dom  𝑣  +o  𝑦 ) )  ∪  ◡ ( 𝑦  ∈  dom  𝑣  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝑢 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) )  +o  𝑦 ) ) )  =  ( ( 𝑦  ∈  ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  ↦  ( ( 𝐻 ‘ 𝐼 )  +o  𝑦 ) )  ∪  ◡ ( 𝑦  ∈  ( 𝐻 ‘ 𝐼 )  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  +o  𝑦 ) ) ) ) | 
						
							| 94 | 10 | elexd | ⊢ ( 𝜑  →  𝐼  ∈  V ) | 
						
							| 95 |  | fvexd | ⊢ ( 𝜑  →  ( 𝑇 ‘ 𝐼 )  ∈  V ) | 
						
							| 96 |  | ovex | ⊢ ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  ∈  V | 
						
							| 97 | 96 | mptex | ⊢ ( 𝑦  ∈  ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  ↦  ( ( 𝐻 ‘ 𝐼 )  +o  𝑦 ) )  ∈  V | 
						
							| 98 |  | fvex | ⊢ ( 𝐻 ‘ 𝐼 )  ∈  V | 
						
							| 99 | 98 | mptex | ⊢ ( 𝑦  ∈  ( 𝐻 ‘ 𝐼 )  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  +o  𝑦 ) )  ∈  V | 
						
							| 100 | 99 | cnvex | ⊢ ◡ ( 𝑦  ∈  ( 𝐻 ‘ 𝐼 )  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  +o  𝑦 ) )  ∈  V | 
						
							| 101 | 97 100 | unex | ⊢ ( ( 𝑦  ∈  ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  ↦  ( ( 𝐻 ‘ 𝐼 )  +o  𝑦 ) )  ∪  ◡ ( 𝑦  ∈  ( 𝐻 ‘ 𝐼 )  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  +o  𝑦 ) ) )  ∈  V | 
						
							| 102 | 101 | a1i | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  ↦  ( ( 𝐻 ‘ 𝐼 )  +o  𝑦 ) )  ∪  ◡ ( 𝑦  ∈  ( 𝐻 ‘ 𝐼 )  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  +o  𝑦 ) ) )  ∈  V ) | 
						
							| 103 | 77 93 94 95 102 | ovmpod | ⊢ ( 𝜑  →  ( 𝐼 ( 𝑘  ∈  V ,  𝑓  ∈  V  ↦  𝐾 ) ( 𝑇 ‘ 𝐼 ) )  =  ( ( 𝑦  ∈  ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  ↦  ( ( 𝐻 ‘ 𝐼 )  +o  𝑦 ) )  ∪  ◡ ( 𝑦  ∈  ( 𝐻 ‘ 𝐼 )  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  +o  𝑦 ) ) ) ) | 
						
							| 104 | 50 103 | eqtrd | ⊢ ( 𝜑  →  ( 𝑇 ‘ suc  𝐼 )  =  ( ( 𝑦  ∈  ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  ↦  ( ( 𝐻 ‘ 𝐼 )  +o  𝑦 ) )  ∪  ◡ ( 𝑦  ∈  ( 𝐻 ‘ 𝐼 )  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  +o  𝑦 ) ) ) ) | 
						
							| 105 | 104 | f1oeq1d | ⊢ ( 𝜑  →  ( ( 𝑇 ‘ suc  𝐼 ) : ( ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  +o  ( 𝐻 ‘ 𝐼 ) ) –1-1-onto→ ( ( 𝐻 ‘ 𝐼 )  +o  ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) )  ↔  ( ( 𝑦  ∈  ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  ↦  ( ( 𝐻 ‘ 𝐼 )  +o  𝑦 ) )  ∪  ◡ ( 𝑦  ∈  ( 𝐻 ‘ 𝐼 )  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  +o  𝑦 ) ) ) : ( ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  +o  ( 𝐻 ‘ 𝐼 ) ) –1-1-onto→ ( ( 𝐻 ‘ 𝐼 )  +o  ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) ) | 
						
							| 106 | 48 105 | mpbird | ⊢ ( 𝜑  →  ( 𝑇 ‘ suc  𝐼 ) : ( ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  +o  ( 𝐻 ‘ 𝐼 ) ) –1-1-onto→ ( ( 𝐻 ‘ 𝐼 )  +o  ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) | 
						
							| 107 | 13 | a1i | ⊢ ( ( 𝐴  ∈  On  ∧  𝐹  ∈  𝑆 )  →  ω  ∈  On ) | 
						
							| 108 |  | simpl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐹  ∈  𝑆 )  →  𝐴  ∈  On ) | 
						
							| 109 |  | simpr | ⊢ ( ( 𝐴  ∈  On  ∧  𝐹  ∈  𝑆 )  →  𝐹  ∈  𝑆 ) | 
						
							| 110 | 8 | oveq1i | ⊢ ( 𝑀  +o  𝑧 )  =  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) | 
						
							| 111 | 110 | a1i | ⊢ ( ( 𝑘  ∈  V  ∧  𝑧  ∈  V )  →  ( 𝑀  +o  𝑧 )  =  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) | 
						
							| 112 | 111 | mpoeq3ia | ⊢ ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( 𝑀  +o  𝑧 ) )  =  ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) | 
						
							| 113 |  | eqid | ⊢ ∅  =  ∅ | 
						
							| 114 |  | seqomeq12 | ⊢ ( ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( 𝑀  +o  𝑧 ) )  =  ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) )  ∧  ∅  =  ∅ )  →  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( 𝑀  +o  𝑧 ) ) ,  ∅ )  =  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ) | 
						
							| 115 | 112 113 114 | mp2an | ⊢ seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( 𝑀  +o  𝑧 ) ) ,  ∅ )  =  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) | 
						
							| 116 | 6 115 | eqtri | ⊢ 𝐻  =  seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝑘 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) | 
						
							| 117 | 1 107 108 5 109 116 | cantnfsuc | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐹  ∈  𝑆 )  ∧  𝐼  ∈  ω )  →  ( 𝐻 ‘ suc  𝐼 )  =  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  +o  ( 𝐻 ‘ 𝐼 ) ) ) | 
						
							| 118 | 2 21 42 117 | syl21anc | ⊢ ( 𝜑  →  ( 𝐻 ‘ suc  𝐼 )  =  ( ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  +o  ( 𝐻 ‘ 𝐼 ) ) ) | 
						
							| 119 | 118 | f1oeq2d | ⊢ ( 𝜑  →  ( ( 𝑇 ‘ suc  𝐼 ) : ( 𝐻 ‘ suc  𝐼 ) –1-1-onto→ ( ( 𝐻 ‘ 𝐼 )  +o  ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) )  ↔  ( 𝑇 ‘ suc  𝐼 ) : ( ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  +o  ( 𝐻 ‘ 𝐼 ) ) –1-1-onto→ ( ( 𝐻 ‘ 𝐼 )  +o  ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) ) | 
						
							| 120 | 106 119 | mpbird | ⊢ ( 𝜑  →  ( 𝑇 ‘ suc  𝐼 ) : ( 𝐻 ‘ suc  𝐼 ) –1-1-onto→ ( ( 𝐻 ‘ 𝐼 )  +o  ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) | 
						
							| 121 |  | sssucid | ⊢ dom  𝐺  ⊆  suc  dom  𝐺 | 
						
							| 122 | 121 10 | sselid | ⊢ ( 𝜑  →  𝐼  ∈  suc  dom  𝐺 ) | 
						
							| 123 |  | epelg | ⊢ ( 𝐼  ∈  dom  𝐺  →  ( 𝑦  E  𝐼  ↔  𝑦  ∈  𝐼 ) ) | 
						
							| 124 | 10 123 | syl | ⊢ ( 𝜑  →  ( 𝑦  E  𝐼  ↔  𝑦  ∈  𝐼 ) ) | 
						
							| 125 | 124 | biimpar | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  𝑦  E  𝐼 ) | 
						
							| 126 |  | ovexd | ⊢ ( 𝜑  →  ( 𝐹  supp  ∅ )  ∈  V ) | 
						
							| 127 | 39 | simpld | ⊢ ( 𝜑  →   E   We  ( 𝐹  supp  ∅ ) ) | 
						
							| 128 | 5 | oiiso | ⊢ ( ( ( 𝐹  supp  ∅ )  ∈  V  ∧   E   We  ( 𝐹  supp  ∅ ) )  →  𝐺  Isom   E  ,   E  ( dom  𝐺 ,  ( 𝐹  supp  ∅ ) ) ) | 
						
							| 129 | 126 127 128 | syl2anc | ⊢ ( 𝜑  →  𝐺  Isom   E  ,   E  ( dom  𝐺 ,  ( 𝐹  supp  ∅ ) ) ) | 
						
							| 130 | 129 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  𝐺  Isom   E  ,   E  ( dom  𝐺 ,  ( 𝐹  supp  ∅ ) ) ) | 
						
							| 131 | 5 | oicl | ⊢ Ord  dom  𝐺 | 
						
							| 132 |  | ordelss | ⊢ ( ( Ord  dom  𝐺  ∧  𝐼  ∈  dom  𝐺 )  →  𝐼  ⊆  dom  𝐺 ) | 
						
							| 133 | 131 10 132 | sylancr | ⊢ ( 𝜑  →  𝐼  ⊆  dom  𝐺 ) | 
						
							| 134 | 133 | sselda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  𝑦  ∈  dom  𝐺 ) | 
						
							| 135 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  𝐼  ∈  dom  𝐺 ) | 
						
							| 136 |  | isorel | ⊢ ( ( 𝐺  Isom   E  ,   E  ( dom  𝐺 ,  ( 𝐹  supp  ∅ ) )  ∧  ( 𝑦  ∈  dom  𝐺  ∧  𝐼  ∈  dom  𝐺 ) )  →  ( 𝑦  E  𝐼  ↔  ( 𝐺 ‘ 𝑦 )  E  ( 𝐺 ‘ 𝐼 ) ) ) | 
						
							| 137 | 130 134 135 136 | syl12anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  ( 𝑦  E  𝐼  ↔  ( 𝐺 ‘ 𝑦 )  E  ( 𝐺 ‘ 𝐼 ) ) ) | 
						
							| 138 | 125 137 | mpbid | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  ( 𝐺 ‘ 𝑦 )  E  ( 𝐺 ‘ 𝐼 ) ) | 
						
							| 139 |  | fvex | ⊢ ( 𝐺 ‘ 𝐼 )  ∈  V | 
						
							| 140 | 139 | epeli | ⊢ ( ( 𝐺 ‘ 𝑦 )  E  ( 𝐺 ‘ 𝐼 )  ↔  ( 𝐺 ‘ 𝑦 )  ∈  ( 𝐺 ‘ 𝐼 ) ) | 
						
							| 141 | 138 140 | sylib | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  ( 𝐺 ‘ 𝑦 )  ∈  ( 𝐺 ‘ 𝐼 ) ) | 
						
							| 142 | 141 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝐼 ( 𝐺 ‘ 𝑦 )  ∈  ( 𝐺 ‘ 𝐼 ) ) | 
						
							| 143 |  | ffun | ⊢ ( 𝐺 : dom  𝐺 ⟶ ( 𝐹  supp  ∅ )  →  Fun  𝐺 ) | 
						
							| 144 | 26 143 | ax-mp | ⊢ Fun  𝐺 | 
						
							| 145 |  | funimass4 | ⊢ ( ( Fun  𝐺  ∧  𝐼  ⊆  dom  𝐺 )  →  ( ( 𝐺  “  𝐼 )  ⊆  ( 𝐺 ‘ 𝐼 )  ↔  ∀ 𝑦  ∈  𝐼 ( 𝐺 ‘ 𝑦 )  ∈  ( 𝐺 ‘ 𝐼 ) ) ) | 
						
							| 146 | 144 133 145 | sylancr | ⊢ ( 𝜑  →  ( ( 𝐺  “  𝐼 )  ⊆  ( 𝐺 ‘ 𝐼 )  ↔  ∀ 𝑦  ∈  𝐼 ( 𝐺 ‘ 𝑦 )  ∈  ( 𝐺 ‘ 𝐼 ) ) ) | 
						
							| 147 | 142 146 | mpbird | ⊢ ( 𝜑  →  ( 𝐺  “  𝐼 )  ⊆  ( 𝐺 ‘ 𝐼 ) ) | 
						
							| 148 | 13 | a1i | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐹  ∈  𝑆 )  ∧  ( 𝐼  ∈  suc  dom  𝐺  ∧  ( 𝐺 ‘ 𝐼 )  ∈  On  ∧  ( 𝐺  “  𝐼 )  ⊆  ( 𝐺 ‘ 𝐼 ) ) )  →  ω  ∈  On ) | 
						
							| 149 |  | simpll | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐹  ∈  𝑆 )  ∧  ( 𝐼  ∈  suc  dom  𝐺  ∧  ( 𝐺 ‘ 𝐼 )  ∈  On  ∧  ( 𝐺  “  𝐼 )  ⊆  ( 𝐺 ‘ 𝐼 ) ) )  →  𝐴  ∈  On ) | 
						
							| 150 |  | simplr | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐹  ∈  𝑆 )  ∧  ( 𝐼  ∈  suc  dom  𝐺  ∧  ( 𝐺 ‘ 𝐼 )  ∈  On  ∧  ( 𝐺  “  𝐼 )  ⊆  ( 𝐺 ‘ 𝐼 ) ) )  →  𝐹  ∈  𝑆 ) | 
						
							| 151 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 152 | 151 | a1i | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐹  ∈  𝑆 )  ∧  ( 𝐼  ∈  suc  dom  𝐺  ∧  ( 𝐺 ‘ 𝐼 )  ∈  On  ∧  ( 𝐺  “  𝐼 )  ⊆  ( 𝐺 ‘ 𝐼 ) ) )  →  ∅  ∈  ω ) | 
						
							| 153 |  | simpr1 | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐹  ∈  𝑆 )  ∧  ( 𝐼  ∈  suc  dom  𝐺  ∧  ( 𝐺 ‘ 𝐼 )  ∈  On  ∧  ( 𝐺  “  𝐼 )  ⊆  ( 𝐺 ‘ 𝐼 ) ) )  →  𝐼  ∈  suc  dom  𝐺 ) | 
						
							| 154 |  | simpr2 | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐹  ∈  𝑆 )  ∧  ( 𝐼  ∈  suc  dom  𝐺  ∧  ( 𝐺 ‘ 𝐼 )  ∈  On  ∧  ( 𝐺  “  𝐼 )  ⊆  ( 𝐺 ‘ 𝐼 ) ) )  →  ( 𝐺 ‘ 𝐼 )  ∈  On ) | 
						
							| 155 |  | simpr3 | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐹  ∈  𝑆 )  ∧  ( 𝐼  ∈  suc  dom  𝐺  ∧  ( 𝐺 ‘ 𝐼 )  ∈  On  ∧  ( 𝐺  “  𝐼 )  ⊆  ( 𝐺 ‘ 𝐼 ) ) )  →  ( 𝐺  “  𝐼 )  ⊆  ( 𝐺 ‘ 𝐼 ) ) | 
						
							| 156 | 1 148 149 5 150 116 152 153 154 155 | cantnflt | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐹  ∈  𝑆 )  ∧  ( 𝐼  ∈  suc  dom  𝐺  ∧  ( 𝐺 ‘ 𝐼 )  ∈  On  ∧  ( 𝐺  “  𝐼 )  ⊆  ( 𝐺 ‘ 𝐼 ) ) )  →  ( 𝐻 ‘ 𝐼 )  ∈  ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) ) ) | 
						
							| 157 | 2 21 122 31 147 156 | syl23anc | ⊢ ( 𝜑  →  ( 𝐻 ‘ 𝐼 )  ∈  ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) ) ) | 
						
							| 158 | 24 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝐴 ) | 
						
							| 159 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 160 | 159 | a1i | ⊢ ( 𝜑  →  ∅  ∈  V ) | 
						
							| 161 |  | elsuppfn | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐴  ∈  On  ∧  ∅  ∈  V )  →  ( ( 𝐺 ‘ 𝐼 )  ∈  ( 𝐹  supp  ∅ )  ↔  ( ( 𝐺 ‘ 𝐼 )  ∈  𝐴  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) )  ≠  ∅ ) ) ) | 
						
							| 162 | 158 2 160 161 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝐼 )  ∈  ( 𝐹  supp  ∅ )  ↔  ( ( 𝐺 ‘ 𝐼 )  ∈  𝐴  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) )  ≠  ∅ ) ) ) | 
						
							| 163 |  | simpr | ⊢ ( ( ( 𝐺 ‘ 𝐼 )  ∈  𝐴  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) )  ≠  ∅ )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) )  ≠  ∅ ) | 
						
							| 164 | 162 163 | biimtrdi | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝐼 )  ∈  ( 𝐹  supp  ∅ )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) )  ≠  ∅ ) ) | 
						
							| 165 | 28 164 | mpd | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) )  ≠  ∅ ) | 
						
							| 166 |  | on0eln0 | ⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) )  ∈  On  →  ( ∅  ∈  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) )  ↔  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) )  ≠  ∅ ) ) | 
						
							| 167 | 36 166 | syl | ⊢ ( 𝜑  →  ( ∅  ∈  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) )  ↔  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) )  ≠  ∅ ) ) | 
						
							| 168 | 165 167 | mpbird | ⊢ ( 𝜑  →  ∅  ∈  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) | 
						
							| 169 |  | omword1 | ⊢ ( ( ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ∈  On  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) )  ∈  On )  ∧  ∅  ∈  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  →  ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ⊆  ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) | 
						
							| 170 | 33 36 168 169 | syl21anc | ⊢ ( 𝜑  →  ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ⊆  ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) | 
						
							| 171 |  | oaabs2 | ⊢ ( ( ( ( 𝐻 ‘ 𝐼 )  ∈  ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ∧  ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) )  ∈  On )  ∧  ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ⊆  ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) )  →  ( ( 𝐻 ‘ 𝐼 )  +o  ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) )  =  ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) | 
						
							| 172 | 157 38 170 171 | syl21anc | ⊢ ( 𝜑  →  ( ( 𝐻 ‘ 𝐼 )  +o  ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) )  =  ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) | 
						
							| 173 | 172 | f1oeq3d | ⊢ ( 𝜑  →  ( ( 𝑇 ‘ suc  𝐼 ) : ( 𝐻 ‘ suc  𝐼 ) –1-1-onto→ ( ( 𝐻 ‘ 𝐼 )  +o  ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) )  ↔  ( 𝑇 ‘ suc  𝐼 ) : ( 𝐻 ‘ suc  𝐼 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) | 
						
							| 174 | 120 173 | mpbid | ⊢ ( 𝜑  →  ( 𝑇 ‘ suc  𝐼 ) : ( 𝐻 ‘ suc  𝐼 ) –1-1-onto→ ( ( ω  ↑o  ( 𝐺 ‘ 𝐼 ) )  ·o  ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) |