Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
2 |
1
|
jctr |
⊢ ( 𝐽 ∈ Top → ( 𝐽 ∈ Top ∧ ∪ 𝐽 = ∪ 𝐽 ) ) |
3 |
|
istopon |
⊢ ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ↔ ( 𝐽 ∈ Top ∧ ∪ 𝐽 = ∪ 𝐽 ) ) |
4 |
2 3
|
sylibr |
⊢ ( 𝐽 ∈ Top → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
5 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
6 |
5
|
jctr |
⊢ ( 𝐾 ∈ Top → ( 𝐾 ∈ Top ∧ ∪ 𝐾 = ∪ 𝐾 ) ) |
7 |
|
istopon |
⊢ ( 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ↔ ( 𝐾 ∈ Top ∧ ∪ 𝐾 = ∪ 𝐾 ) ) |
8 |
6 7
|
sylibr |
⊢ ( 𝐾 ∈ Top → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
9 |
|
cnfval |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) → ( 𝐽 Cn 𝐾 ) = { 𝑓 ∈ ( ∪ 𝐾 ↑m ∪ 𝐽 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝐽 } ) |
10 |
4 8 9
|
syl2an |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( 𝐽 Cn 𝐾 ) = { 𝑓 ∈ ( ∪ 𝐾 ↑m ∪ 𝐽 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝐽 } ) |
11 |
|
uniexg |
⊢ ( 𝐾 ∈ Top → ∪ 𝐾 ∈ V ) |
12 |
|
uniexg |
⊢ ( 𝐽 ∈ Top → ∪ 𝐽 ∈ V ) |
13 |
|
mapvalg |
⊢ ( ( ∪ 𝐾 ∈ V ∧ ∪ 𝐽 ∈ V ) → ( ∪ 𝐾 ↑m ∪ 𝐽 ) = { 𝑓 ∣ 𝑓 : ∪ 𝐽 ⟶ ∪ 𝐾 } ) |
14 |
11 12 13
|
syl2anr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( ∪ 𝐾 ↑m ∪ 𝐽 ) = { 𝑓 ∣ 𝑓 : ∪ 𝐽 ⟶ ∪ 𝐾 } ) |
15 |
|
mapex |
⊢ ( ( ∪ 𝐽 ∈ V ∧ ∪ 𝐾 ∈ V ) → { 𝑓 ∣ 𝑓 : ∪ 𝐽 ⟶ ∪ 𝐾 } ∈ V ) |
16 |
12 11 15
|
syl2an |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → { 𝑓 ∣ 𝑓 : ∪ 𝐽 ⟶ ∪ 𝐾 } ∈ V ) |
17 |
14 16
|
eqeltrd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( ∪ 𝐾 ↑m ∪ 𝐽 ) ∈ V ) |
18 |
|
rabexg |
⊢ ( ( ∪ 𝐾 ↑m ∪ 𝐽 ) ∈ V → { 𝑓 ∈ ( ∪ 𝐾 ↑m ∪ 𝐽 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝐽 } ∈ V ) |
19 |
17 18
|
syl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → { 𝑓 ∈ ( ∪ 𝐾 ↑m ∪ 𝐽 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝐽 } ∈ V ) |
20 |
10 19
|
eqeltrd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( 𝐽 Cn 𝐾 ) ∈ V ) |