Metamath Proof Explorer


Theorem cnfld1

Description: One is the unit element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Assertion cnfld1 1 = ( 1r ‘ ℂfld )

Proof

Step Hyp Ref Expression
1 ax-1cn 1 ∈ ℂ
2 mulid2 ( 𝑥 ∈ ℂ → ( 1 · 𝑥 ) = 𝑥 )
3 mulid1 ( 𝑥 ∈ ℂ → ( 𝑥 · 1 ) = 𝑥 )
4 2 3 jca ( 𝑥 ∈ ℂ → ( ( 1 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 1 ) = 𝑥 ) )
5 4 rgen 𝑥 ∈ ℂ ( ( 1 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 1 ) = 𝑥 )
6 1 5 pm3.2i ( 1 ∈ ℂ ∧ ∀ 𝑥 ∈ ℂ ( ( 1 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 1 ) = 𝑥 ) )
7 cnring fld ∈ Ring
8 cnfldbas ℂ = ( Base ‘ ℂfld )
9 cnfldmul · = ( .r ‘ ℂfld )
10 eqid ( 1r ‘ ℂfld ) = ( 1r ‘ ℂfld )
11 8 9 10 isringid ( ℂfld ∈ Ring → ( ( 1 ∈ ℂ ∧ ∀ 𝑥 ∈ ℂ ( ( 1 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 1 ) = 𝑥 ) ) ↔ ( 1r ‘ ℂfld ) = 1 ) )
12 7 11 ax-mp ( ( 1 ∈ ℂ ∧ ∀ 𝑥 ∈ ℂ ( ( 1 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 1 ) = 𝑥 ) ) ↔ ( 1r ‘ ℂfld ) = 1 )
13 6 12 mpbi ( 1r ‘ ℂfld ) = 1
14 13 eqcomi 1 = ( 1r ‘ ℂfld )