Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
2 |
|
mulid2 |
⊢ ( 𝑥 ∈ ℂ → ( 1 · 𝑥 ) = 𝑥 ) |
3 |
|
mulid1 |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 · 1 ) = 𝑥 ) |
4 |
2 3
|
jca |
⊢ ( 𝑥 ∈ ℂ → ( ( 1 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 1 ) = 𝑥 ) ) |
5 |
4
|
rgen |
⊢ ∀ 𝑥 ∈ ℂ ( ( 1 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 1 ) = 𝑥 ) |
6 |
1 5
|
pm3.2i |
⊢ ( 1 ∈ ℂ ∧ ∀ 𝑥 ∈ ℂ ( ( 1 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 1 ) = 𝑥 ) ) |
7 |
|
cnring |
⊢ ℂfld ∈ Ring |
8 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
9 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
10 |
|
eqid |
⊢ ( 1r ‘ ℂfld ) = ( 1r ‘ ℂfld ) |
11 |
8 9 10
|
isringid |
⊢ ( ℂfld ∈ Ring → ( ( 1 ∈ ℂ ∧ ∀ 𝑥 ∈ ℂ ( ( 1 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 1 ) = 𝑥 ) ) ↔ ( 1r ‘ ℂfld ) = 1 ) ) |
12 |
7 11
|
ax-mp |
⊢ ( ( 1 ∈ ℂ ∧ ∀ 𝑥 ∈ ℂ ( ( 1 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 1 ) = 𝑥 ) ) ↔ ( 1r ‘ ℂfld ) = 1 ) |
13 |
6 12
|
mpbi |
⊢ ( 1r ‘ ℂfld ) = 1 |
14 |
13
|
eqcomi |
⊢ 1 = ( 1r ‘ ℂfld ) |