Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
2 |
|
ovmpot |
⊢ ( ( 1 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 1 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) = ( 1 · 𝑥 ) ) |
3 |
2
|
eqcomd |
⊢ ( ( 1 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 1 · 𝑥 ) = ( 1 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) ) |
4 |
1 3
|
mpan |
⊢ ( 𝑥 ∈ ℂ → ( 1 · 𝑥 ) = ( 1 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) ) |
5 |
|
mullid |
⊢ ( 𝑥 ∈ ℂ → ( 1 · 𝑥 ) = 𝑥 ) |
6 |
4 5
|
eqtr3d |
⊢ ( 𝑥 ∈ ℂ → ( 1 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) = 𝑥 ) |
7 |
|
ovmpot |
⊢ ( ( 𝑥 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 1 ) = ( 𝑥 · 1 ) ) |
8 |
1 7
|
mpan2 |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 1 ) = ( 𝑥 · 1 ) ) |
9 |
|
mulrid |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 · 1 ) = 𝑥 ) |
10 |
8 9
|
eqtrd |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 1 ) = 𝑥 ) |
11 |
6 10
|
jca |
⊢ ( 𝑥 ∈ ℂ → ( ( 1 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 1 ) = 𝑥 ) ) |
12 |
11
|
rgen |
⊢ ∀ 𝑥 ∈ ℂ ( ( 1 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 1 ) = 𝑥 ) |
13 |
1 12
|
pm3.2i |
⊢ ( 1 ∈ ℂ ∧ ∀ 𝑥 ∈ ℂ ( ( 1 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 1 ) = 𝑥 ) ) |
14 |
|
cnring |
⊢ ℂfld ∈ Ring |
15 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
16 |
|
mpocnfldmul |
⊢ ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) = ( .r ‘ ℂfld ) |
17 |
|
eqid |
⊢ ( 1r ‘ ℂfld ) = ( 1r ‘ ℂfld ) |
18 |
15 16 17
|
isringid |
⊢ ( ℂfld ∈ Ring → ( ( 1 ∈ ℂ ∧ ∀ 𝑥 ∈ ℂ ( ( 1 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 1 ) = 𝑥 ) ) ↔ ( 1r ‘ ℂfld ) = 1 ) ) |
19 |
14 18
|
ax-mp |
⊢ ( ( 1 ∈ ℂ ∧ ∀ 𝑥 ∈ ℂ ( ( 1 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 1 ) = 𝑥 ) ) ↔ ( 1r ‘ ℂfld ) = 1 ) |
20 |
13 19
|
mpbi |
⊢ ( 1r ‘ ℂfld ) = 1 |
21 |
20
|
eqcomi |
⊢ 1 = ( 1r ‘ ℂfld ) |