Metamath Proof Explorer


Theorem cnfldcj

Description: The conjugation operation of the field of complex numbers. (Contributed by Mario Carneiro, 6-Oct-2015) (Revised by Thierry Arnoux, 17-Dec-2017) (Revised by Thierry Arnoux, 17-Dec-2017)

Ref Expression
Assertion cnfldcj ∗ = ( *𝑟 ‘ ℂfld )

Proof

Step Hyp Ref Expression
1 cjf ∗ : ℂ ⟶ ℂ
2 cnex ℂ ∈ V
3 fex2 ( ( ∗ : ℂ ⟶ ℂ ∧ ℂ ∈ V ∧ ℂ ∈ V ) → ∗ ∈ V )
4 1 2 2 3 mp3an ∗ ∈ V
5 cnfldstr fld Struct ⟨ 1 , 1 3 ⟩
6 starvid *𝑟 = Slot ( *𝑟 ‘ ndx )
7 ssun2 { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } )
8 ssun1 ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ) ⊆ ( ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ) ∪ ( { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) )
9 df-cnfld fld = ( ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ) ∪ ( { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) )
10 8 9 sseqtrri ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ) ⊆ ℂfld
11 7 10 sstri { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ⊆ ℂfld
12 5 6 11 strfv ( ∗ ∈ V → ∗ = ( *𝑟 ‘ ℂfld ) )
13 4 12 ax-mp ∗ = ( *𝑟 ‘ ℂfld )