Step |
Hyp |
Ref |
Expression |
1 |
|
0cn |
⊢ 0 ∈ ℂ |
2 |
1
|
ne0ii |
⊢ ℂ ≠ ∅ |
3 |
|
cncms |
⊢ ℂfld ∈ CMetSp |
4 |
|
eqid |
⊢ ( UnifSt ‘ ℂfld ) = ( UnifSt ‘ ℂfld ) |
5 |
4
|
cnflduss |
⊢ ( UnifSt ‘ ℂfld ) = ( metUnif ‘ ( abs ∘ − ) ) |
6 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
7 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
8 |
|
subf |
⊢ − : ( ℂ × ℂ ) ⟶ ℂ |
9 |
|
fco |
⊢ ( ( abs : ℂ ⟶ ℝ ∧ − : ( ℂ × ℂ ) ⟶ ℂ ) → ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ ) |
10 |
7 8 9
|
mp2an |
⊢ ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ |
11 |
|
ffn |
⊢ ( ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ → ( abs ∘ − ) Fn ( ℂ × ℂ ) ) |
12 |
|
fnresdm |
⊢ ( ( abs ∘ − ) Fn ( ℂ × ℂ ) → ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) = ( abs ∘ − ) ) |
13 |
10 11 12
|
mp2b |
⊢ ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) = ( abs ∘ − ) |
14 |
|
cnfldds |
⊢ ( abs ∘ − ) = ( dist ‘ ℂfld ) |
15 |
14
|
reseq1i |
⊢ ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) = ( ( dist ‘ ℂfld ) ↾ ( ℂ × ℂ ) ) |
16 |
13 15
|
eqtr3i |
⊢ ( abs ∘ − ) = ( ( dist ‘ ℂfld ) ↾ ( ℂ × ℂ ) ) |
17 |
6 16 4
|
cmetcusp1 |
⊢ ( ( ℂ ≠ ∅ ∧ ℂfld ∈ CMetSp ∧ ( UnifSt ‘ ℂfld ) = ( metUnif ‘ ( abs ∘ − ) ) ) → ℂfld ∈ CUnifSp ) |
18 |
2 3 5 17
|
mp3an |
⊢ ℂfld ∈ CUnifSp |