| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 2 | 1 | ne0ii | ⊢ ℂ  ≠  ∅ | 
						
							| 3 |  | cncms | ⊢ ℂfld  ∈  CMetSp | 
						
							| 4 |  | eqid | ⊢ ( UnifSt ‘ ℂfld )  =  ( UnifSt ‘ ℂfld ) | 
						
							| 5 | 4 | cnflduss | ⊢ ( UnifSt ‘ ℂfld )  =  ( metUnif ‘ ( abs  ∘   −  ) ) | 
						
							| 6 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 7 |  | absf | ⊢ abs : ℂ ⟶ ℝ | 
						
							| 8 |  | subf | ⊢  −  : ( ℂ  ×  ℂ ) ⟶ ℂ | 
						
							| 9 |  | fco | ⊢ ( ( abs : ℂ ⟶ ℝ  ∧   −  : ( ℂ  ×  ℂ ) ⟶ ℂ )  →  ( abs  ∘   −  ) : ( ℂ  ×  ℂ ) ⟶ ℝ ) | 
						
							| 10 | 7 8 9 | mp2an | ⊢ ( abs  ∘   −  ) : ( ℂ  ×  ℂ ) ⟶ ℝ | 
						
							| 11 |  | ffn | ⊢ ( ( abs  ∘   −  ) : ( ℂ  ×  ℂ ) ⟶ ℝ  →  ( abs  ∘   −  )  Fn  ( ℂ  ×  ℂ ) ) | 
						
							| 12 |  | fnresdm | ⊢ ( ( abs  ∘   −  )  Fn  ( ℂ  ×  ℂ )  →  ( ( abs  ∘   −  )  ↾  ( ℂ  ×  ℂ ) )  =  ( abs  ∘   −  ) ) | 
						
							| 13 | 10 11 12 | mp2b | ⊢ ( ( abs  ∘   −  )  ↾  ( ℂ  ×  ℂ ) )  =  ( abs  ∘   −  ) | 
						
							| 14 |  | cnfldds | ⊢ ( abs  ∘   −  )  =  ( dist ‘ ℂfld ) | 
						
							| 15 | 14 | reseq1i | ⊢ ( ( abs  ∘   −  )  ↾  ( ℂ  ×  ℂ ) )  =  ( ( dist ‘ ℂfld )  ↾  ( ℂ  ×  ℂ ) ) | 
						
							| 16 | 13 15 | eqtr3i | ⊢ ( abs  ∘   −  )  =  ( ( dist ‘ ℂfld )  ↾  ( ℂ  ×  ℂ ) ) | 
						
							| 17 | 6 16 4 | cmetcusp1 | ⊢ ( ( ℂ  ≠  ∅  ∧  ℂfld  ∈  CMetSp  ∧  ( UnifSt ‘ ℂfld )  =  ( metUnif ‘ ( abs  ∘   −  ) ) )  →  ℂfld  ∈  CUnifSp ) | 
						
							| 18 | 2 3 5 17 | mp3an | ⊢ ℂfld  ∈  CUnifSp |