Metamath Proof Explorer


Theorem cnfldcusp

Description: The field of complex numbers is a complete uniform space. (Contributed by Thierry Arnoux, 17-Dec-2017)

Ref Expression
Assertion cnfldcusp fld ∈ CUnifSp

Proof

Step Hyp Ref Expression
1 0cn 0 ∈ ℂ
2 1 ne0ii ℂ ≠ ∅
3 cncms fld ∈ CMetSp
4 eqid ( UnifSt ‘ ℂfld ) = ( UnifSt ‘ ℂfld )
5 4 cnflduss ( UnifSt ‘ ℂfld ) = ( metUnif ‘ ( abs ∘ − ) )
6 cnfldbas ℂ = ( Base ‘ ℂfld )
7 absf abs : ℂ ⟶ ℝ
8 subf − : ( ℂ × ℂ ) ⟶ ℂ
9 fco ( ( abs : ℂ ⟶ ℝ ∧ − : ( ℂ × ℂ ) ⟶ ℂ ) → ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ )
10 7 8 9 mp2an ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ
11 ffn ( ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ → ( abs ∘ − ) Fn ( ℂ × ℂ ) )
12 fnresdm ( ( abs ∘ − ) Fn ( ℂ × ℂ ) → ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) = ( abs ∘ − ) )
13 10 11 12 mp2b ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) = ( abs ∘ − )
14 cnfldds ( abs ∘ − ) = ( dist ‘ ℂfld )
15 14 reseq1i ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) = ( ( dist ‘ ℂfld ) ↾ ( ℂ × ℂ ) )
16 13 15 eqtr3i ( abs ∘ − ) = ( ( dist ‘ ℂfld ) ↾ ( ℂ × ℂ ) )
17 6 16 4 cmetcusp1 ( ( ℂ ≠ ∅ ∧ ℂfld ∈ CMetSp ∧ ( UnifSt ‘ ℂfld ) = ( metUnif ‘ ( abs ∘ − ) ) ) → ℂfld ∈ CUnifSp )
18 2 3 5 17 mp3an fld ∈ CUnifSp