Metamath Proof Explorer


Theorem cnfldex

Description: The field of complex numbers is a set. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 14-Aug-2015) (Revised by Thierry Arnoux, 17-Dec-2017) Avoid complex number axioms and ax-pow . (Revised by GG, 16-Mar-2025)

Ref Expression
Assertion cnfldex fld ∈ V

Proof

Step Hyp Ref Expression
1 df-cnfld fld = ( ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ) ∪ ( { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) )
2 tpex { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ⟩ } ∈ V
3 snex { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ∈ V
4 2 3 unex ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ) ∈ V
5 tpex { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∈ V
6 snex { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ∈ V
7 5 6 unex ( { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) ∈ V
8 4 7 unex ( ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ) ∪ ( { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) ) ∈ V
9 1 8 eqeltri fld ∈ V