Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 0 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) ) |
2 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 0 ) ) |
3 |
1 2
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑥 ) ↔ ( 0 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 0 ) ) ) |
4 |
3
|
imbi2d |
⊢ ( 𝑥 = 0 → ( ( 𝐴 ∈ ℂ → ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑥 ) ) ↔ ( 𝐴 ∈ ℂ → ( 0 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 0 ) ) ) ) |
5 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) ) |
6 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 𝑦 ) ) |
7 |
5 6
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑥 ) ↔ ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑦 ) ) ) |
8 |
7
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∈ ℂ → ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑥 ) ) ↔ ( 𝐴 ∈ ℂ → ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑦 ) ) ) ) |
9 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( ( 𝑦 + 1 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) ) |
10 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) |
11 |
9 10
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑥 ) ↔ ( ( 𝑦 + 1 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐴 ∈ ℂ → ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑥 ) ) ↔ ( 𝐴 ∈ ℂ → ( ( 𝑦 + 1 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) ) ) |
13 |
|
oveq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐵 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) ) |
14 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 𝐵 ) ) |
15 |
13 14
|
eqeq12d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑥 ) ↔ ( 𝐵 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝐵 ) ) ) |
16 |
15
|
imbi2d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∈ ℂ → ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑥 ) ) ↔ ( 𝐴 ∈ ℂ → ( 𝐵 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝐵 ) ) ) ) |
17 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
18 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
19 |
17 18
|
mgpbas |
⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
20 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
21 |
17 20
|
ringidval |
⊢ 1 = ( 0g ‘ ( mulGrp ‘ ℂfld ) ) |
22 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ℂfld ) ) = ( .g ‘ ( mulGrp ‘ ℂfld ) ) |
23 |
19 21 22
|
mulg0 |
⊢ ( 𝐴 ∈ ℂ → ( 0 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = 1 ) |
24 |
|
exp0 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 0 ) = 1 ) |
25 |
23 24
|
eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( 0 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 0 ) ) |
26 |
|
oveq1 |
⊢ ( ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑦 ) → ( ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) · 𝐴 ) = ( ( 𝐴 ↑ 𝑦 ) · 𝐴 ) ) |
27 |
|
cnring |
⊢ ℂfld ∈ Ring |
28 |
17
|
ringmgp |
⊢ ( ℂfld ∈ Ring → ( mulGrp ‘ ℂfld ) ∈ Mnd ) |
29 |
27 28
|
ax-mp |
⊢ ( mulGrp ‘ ℂfld ) ∈ Mnd |
30 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
31 |
17 30
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
32 |
19 22 31
|
mulgnn0p1 |
⊢ ( ( ( mulGrp ‘ ℂfld ) ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( 𝑦 + 1 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) · 𝐴 ) ) |
33 |
29 32
|
mp3an1 |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( 𝑦 + 1 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) · 𝐴 ) ) |
34 |
33
|
ancoms |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 + 1 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) · 𝐴 ) ) |
35 |
|
expp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑦 + 1 ) ) = ( ( 𝐴 ↑ 𝑦 ) · 𝐴 ) ) |
36 |
34 35
|
eqeq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 + 1 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ ( 𝑦 + 1 ) ) ↔ ( ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) · 𝐴 ) = ( ( 𝐴 ↑ 𝑦 ) · 𝐴 ) ) ) |
37 |
26 36
|
syl5ibr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑦 ) → ( ( 𝑦 + 1 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) ) |
38 |
37
|
expcom |
⊢ ( 𝑦 ∈ ℕ0 → ( 𝐴 ∈ ℂ → ( ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑦 ) → ( ( 𝑦 + 1 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) ) ) |
39 |
38
|
a2d |
⊢ ( 𝑦 ∈ ℕ0 → ( ( 𝐴 ∈ ℂ → ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑦 ) ) → ( 𝐴 ∈ ℂ → ( ( 𝑦 + 1 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) ) ) |
40 |
4 8 12 16 25 39
|
nn0ind |
⊢ ( 𝐵 ∈ ℕ0 → ( 𝐴 ∈ ℂ → ( 𝐵 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝐵 ) ) ) |
41 |
40
|
impcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0 ) → ( 𝐵 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝐵 ) ) |