| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 0 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) ) |
| 2 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 0 ) ) |
| 3 |
1 2
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑥 ) ↔ ( 0 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 0 ) ) ) |
| 4 |
3
|
imbi2d |
⊢ ( 𝑥 = 0 → ( ( 𝐴 ∈ ℂ → ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑥 ) ) ↔ ( 𝐴 ∈ ℂ → ( 0 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 0 ) ) ) ) |
| 5 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) ) |
| 6 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 𝑦 ) ) |
| 7 |
5 6
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑥 ) ↔ ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑦 ) ) ) |
| 8 |
7
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∈ ℂ → ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑥 ) ) ↔ ( 𝐴 ∈ ℂ → ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑦 ) ) ) ) |
| 9 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( ( 𝑦 + 1 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) ) |
| 10 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) |
| 11 |
9 10
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑥 ) ↔ ( ( 𝑦 + 1 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) ) |
| 12 |
11
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐴 ∈ ℂ → ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑥 ) ) ↔ ( 𝐴 ∈ ℂ → ( ( 𝑦 + 1 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) ) ) |
| 13 |
|
oveq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐵 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) ) |
| 14 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 𝐵 ) ) |
| 15 |
13 14
|
eqeq12d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑥 ) ↔ ( 𝐵 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝐵 ) ) ) |
| 16 |
15
|
imbi2d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∈ ℂ → ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑥 ) ) ↔ ( 𝐴 ∈ ℂ → ( 𝐵 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝐵 ) ) ) ) |
| 17 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
| 18 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 19 |
17 18
|
mgpbas |
⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
| 20 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
| 21 |
17 20
|
ringidval |
⊢ 1 = ( 0g ‘ ( mulGrp ‘ ℂfld ) ) |
| 22 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ℂfld ) ) = ( .g ‘ ( mulGrp ‘ ℂfld ) ) |
| 23 |
19 21 22
|
mulg0 |
⊢ ( 𝐴 ∈ ℂ → ( 0 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = 1 ) |
| 24 |
|
exp0 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 0 ) = 1 ) |
| 25 |
23 24
|
eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( 0 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 0 ) ) |
| 26 |
|
oveq1 |
⊢ ( ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑦 ) → ( ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) · 𝐴 ) = ( ( 𝐴 ↑ 𝑦 ) · 𝐴 ) ) |
| 27 |
|
cnring |
⊢ ℂfld ∈ Ring |
| 28 |
17
|
ringmgp |
⊢ ( ℂfld ∈ Ring → ( mulGrp ‘ ℂfld ) ∈ Mnd ) |
| 29 |
27 28
|
ax-mp |
⊢ ( mulGrp ‘ ℂfld ) ∈ Mnd |
| 30 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
| 31 |
17 30
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
| 32 |
19 22 31
|
mulgnn0p1 |
⊢ ( ( ( mulGrp ‘ ℂfld ) ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( 𝑦 + 1 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) · 𝐴 ) ) |
| 33 |
29 32
|
mp3an1 |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( 𝑦 + 1 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) · 𝐴 ) ) |
| 34 |
33
|
ancoms |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 + 1 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) · 𝐴 ) ) |
| 35 |
|
expp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑦 + 1 ) ) = ( ( 𝐴 ↑ 𝑦 ) · 𝐴 ) ) |
| 36 |
34 35
|
eqeq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 + 1 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ ( 𝑦 + 1 ) ) ↔ ( ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) · 𝐴 ) = ( ( 𝐴 ↑ 𝑦 ) · 𝐴 ) ) ) |
| 37 |
26 36
|
imbitrrid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑦 ) → ( ( 𝑦 + 1 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) ) |
| 38 |
37
|
expcom |
⊢ ( 𝑦 ∈ ℕ0 → ( 𝐴 ∈ ℂ → ( ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑦 ) → ( ( 𝑦 + 1 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) ) ) |
| 39 |
38
|
a2d |
⊢ ( 𝑦 ∈ ℕ0 → ( ( 𝐴 ∈ ℂ → ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑦 ) ) → ( 𝐴 ∈ ℂ → ( ( 𝑦 + 1 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) ) ) |
| 40 |
4 8 12 16 25 39
|
nn0ind |
⊢ ( 𝐵 ∈ ℕ0 → ( 𝐴 ∈ ℂ → ( 𝐵 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝐵 ) ) ) |
| 41 |
40
|
impcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0 ) → ( 𝐵 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝐵 ) ) |