Metamath Proof Explorer


Theorem cnfldfun

Description: The field of complex numbers is a function. (Contributed by AV, 14-Nov-2021) (Proof shortened by AV, 11-Nov-2024)

Ref Expression
Assertion cnfldfun Fun ℂfld

Proof

Step Hyp Ref Expression
1 basendxnplusgndx ( Base ‘ ndx ) ≠ ( +g ‘ ndx )
2 basendxnmulrndx ( Base ‘ ndx ) ≠ ( .r ‘ ndx )
3 plusgndxnmulrndx ( +g ‘ ndx ) ≠ ( .r ‘ ndx )
4 fvex ( Base ‘ ndx ) ∈ V
5 fvex ( +g ‘ ndx ) ∈ V
6 fvex ( .r ‘ ndx ) ∈ V
7 cnex ℂ ∈ V
8 addex + ∈ V
9 mulex · ∈ V
10 4 5 6 7 8 9 funtp ( ( ( Base ‘ ndx ) ≠ ( +g ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( .r ‘ ndx ) ∧ ( +g ‘ ndx ) ≠ ( .r ‘ ndx ) ) → Fun { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } )
11 1 2 3 10 mp3an Fun { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ }
12 fvex ( *𝑟 ‘ ndx ) ∈ V
13 cjf ∗ : ℂ ⟶ ℂ
14 fex ( ( ∗ : ℂ ⟶ ℂ ∧ ℂ ∈ V ) → ∗ ∈ V )
15 13 7 14 mp2an ∗ ∈ V
16 12 15 funsn Fun { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ }
17 11 16 pm3.2i ( Fun { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∧ Fun { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } )
18 7 8 9 dmtpop dom { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } = { ( Base ‘ ndx ) , ( +g ‘ ndx ) , ( .r ‘ ndx ) }
19 15 dmsnop dom { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } = { ( *𝑟 ‘ ndx ) }
20 18 19 ineq12i ( dom { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∩ dom { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ) = ( { ( Base ‘ ndx ) , ( +g ‘ ndx ) , ( .r ‘ ndx ) } ∩ { ( *𝑟 ‘ ndx ) } )
21 starvndxnbasendx ( *𝑟 ‘ ndx ) ≠ ( Base ‘ ndx )
22 21 necomi ( Base ‘ ndx ) ≠ ( *𝑟 ‘ ndx )
23 starvndxnplusgndx ( *𝑟 ‘ ndx ) ≠ ( +g ‘ ndx )
24 23 necomi ( +g ‘ ndx ) ≠ ( *𝑟 ‘ ndx )
25 starvndxnmulrndx ( *𝑟 ‘ ndx ) ≠ ( .r ‘ ndx )
26 25 necomi ( .r ‘ ndx ) ≠ ( *𝑟 ‘ ndx )
27 disjtpsn ( ( ( Base ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) ∧ ( +g ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) ) → ( { ( Base ‘ ndx ) , ( +g ‘ ndx ) , ( .r ‘ ndx ) } ∩ { ( *𝑟 ‘ ndx ) } ) = ∅ )
28 22 24 26 27 mp3an ( { ( Base ‘ ndx ) , ( +g ‘ ndx ) , ( .r ‘ ndx ) } ∩ { ( *𝑟 ‘ ndx ) } ) = ∅
29 20 28 eqtri ( dom { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∩ dom { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ) = ∅
30 funun ( ( ( Fun { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∧ Fun { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ) ∧ ( dom { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∩ dom { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ) = ∅ ) → Fun ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ) )
31 17 29 30 mp2an Fun ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } )
32 slotsdifplendx ( ( *𝑟 ‘ ndx ) ≠ ( le ‘ ndx ) ∧ ( TopSet ‘ ndx ) ≠ ( le ‘ ndx ) )
33 32 simpri ( TopSet ‘ ndx ) ≠ ( le ‘ ndx )
34 dsndxntsetndx ( dist ‘ ndx ) ≠ ( TopSet ‘ ndx )
35 34 necomi ( TopSet ‘ ndx ) ≠ ( dist ‘ ndx )
36 slotsdifdsndx ( ( *𝑟 ‘ ndx ) ≠ ( dist ‘ ndx ) ∧ ( le ‘ ndx ) ≠ ( dist ‘ ndx ) )
37 36 simpri ( le ‘ ndx ) ≠ ( dist ‘ ndx )
38 fvex ( TopSet ‘ ndx ) ∈ V
39 fvex ( le ‘ ndx ) ∈ V
40 fvex ( dist ‘ ndx ) ∈ V
41 fvex ( MetOpen ‘ ( abs ∘ − ) ) ∈ V
42 letsr ≤ ∈ TosetRel
43 42 elexi ≤ ∈ V
44 absf abs : ℂ ⟶ ℝ
45 fex ( ( abs : ℂ ⟶ ℝ ∧ ℂ ∈ V ) → abs ∈ V )
46 44 7 45 mp2an abs ∈ V
47 subf − : ( ℂ × ℂ ) ⟶ ℂ
48 7 7 xpex ( ℂ × ℂ ) ∈ V
49 fex ( ( − : ( ℂ × ℂ ) ⟶ ℂ ∧ ( ℂ × ℂ ) ∈ V ) → − ∈ V )
50 47 48 49 mp2an − ∈ V
51 46 50 coex ( abs ∘ − ) ∈ V
52 38 39 40 41 43 51 funtp ( ( ( TopSet ‘ ndx ) ≠ ( le ‘ ndx ) ∧ ( TopSet ‘ ndx ) ≠ ( dist ‘ ndx ) ∧ ( le ‘ ndx ) ≠ ( dist ‘ ndx ) ) → Fun { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } )
53 33 35 37 52 mp3an Fun { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ }
54 fvex ( UnifSet ‘ ndx ) ∈ V
55 fvex ( metUnif ‘ ( abs ∘ − ) ) ∈ V
56 54 55 funsn Fun { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ }
57 53 56 pm3.2i ( Fun { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∧ Fun { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } )
58 41 43 51 dmtpop dom { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } = { ( TopSet ‘ ndx ) , ( le ‘ ndx ) , ( dist ‘ ndx ) }
59 55 dmsnop dom { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } = { ( UnifSet ‘ ndx ) }
60 58 59 ineq12i ( dom { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∩ dom { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) = ( { ( TopSet ‘ ndx ) , ( le ‘ ndx ) , ( dist ‘ ndx ) } ∩ { ( UnifSet ‘ ndx ) } )
61 slotsdifunifndx ( ( ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( *𝑟 ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ∧ ( ( le ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) )
62 unifndxntsetndx ( UnifSet ‘ ndx ) ≠ ( TopSet ‘ ndx )
63 62 necomi ( TopSet ‘ ndx ) ≠ ( UnifSet ‘ ndx )
64 63 a1i ( ( ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( *𝑟 ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) → ( TopSet ‘ ndx ) ≠ ( UnifSet ‘ ndx ) )
65 64 anim1i ( ( ( ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( *𝑟 ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ∧ ( ( le ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ) → ( ( TopSet ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( ( le ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ) )
66 3anass ( ( ( TopSet ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( le ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ↔ ( ( TopSet ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( ( le ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ) )
67 65 66 sylibr ( ( ( ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( *𝑟 ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ∧ ( ( le ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ) → ( ( TopSet ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( le ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) )
68 61 67 ax-mp ( ( TopSet ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( le ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( UnifSet ‘ ndx ) )
69 disjtpsn ( ( ( TopSet ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( le ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) → ( { ( TopSet ‘ ndx ) , ( le ‘ ndx ) , ( dist ‘ ndx ) } ∩ { ( UnifSet ‘ ndx ) } ) = ∅ )
70 68 69 ax-mp ( { ( TopSet ‘ ndx ) , ( le ‘ ndx ) , ( dist ‘ ndx ) } ∩ { ( UnifSet ‘ ndx ) } ) = ∅
71 60 70 eqtri ( dom { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∩ dom { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) = ∅
72 funun ( ( ( Fun { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∧ Fun { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) ∧ ( dom { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∩ dom { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) = ∅ ) → Fun ( { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) )
73 57 71 72 mp2an Fun ( { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } )
74 31 73 pm3.2i ( Fun ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ) ∧ Fun ( { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) )
75 dmun dom ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ) = ( dom { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ dom { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } )
76 dmun dom ( { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) = ( dom { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ dom { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } )
77 75 76 ineq12i ( dom ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ) ∩ dom ( { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) ) = ( ( dom { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ dom { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ) ∩ ( dom { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ dom { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) )
78 18 58 ineq12i ( dom { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∩ dom { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ) = ( { ( Base ‘ ndx ) , ( +g ‘ ndx ) , ( .r ‘ ndx ) } ∩ { ( TopSet ‘ ndx ) , ( le ‘ ndx ) , ( dist ‘ ndx ) } )
79 tsetndxnbasendx ( TopSet ‘ ndx ) ≠ ( Base ‘ ndx )
80 79 necomi ( Base ‘ ndx ) ≠ ( TopSet ‘ ndx )
81 tsetndxnplusgndx ( TopSet ‘ ndx ) ≠ ( +g ‘ ndx )
82 81 necomi ( +g ‘ ndx ) ≠ ( TopSet ‘ ndx )
83 tsetndxnmulrndx ( TopSet ‘ ndx ) ≠ ( .r ‘ ndx )
84 83 necomi ( .r ‘ ndx ) ≠ ( TopSet ‘ ndx )
85 80 82 84 3pm3.2i ( ( Base ‘ ndx ) ≠ ( TopSet ‘ ndx ) ∧ ( +g ‘ ndx ) ≠ ( TopSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( TopSet ‘ ndx ) )
86 plendxnbasendx ( le ‘ ndx ) ≠ ( Base ‘ ndx )
87 86 necomi ( Base ‘ ndx ) ≠ ( le ‘ ndx )
88 plendxnplusgndx ( le ‘ ndx ) ≠ ( +g ‘ ndx )
89 88 necomi ( +g ‘ ndx ) ≠ ( le ‘ ndx )
90 plendxnmulrndx ( le ‘ ndx ) ≠ ( .r ‘ ndx )
91 90 necomi ( .r ‘ ndx ) ≠ ( le ‘ ndx )
92 87 89 91 3pm3.2i ( ( Base ‘ ndx ) ≠ ( le ‘ ndx ) ∧ ( +g ‘ ndx ) ≠ ( le ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( le ‘ ndx ) )
93 dsndxnbasendx ( dist ‘ ndx ) ≠ ( Base ‘ ndx )
94 93 necomi ( Base ‘ ndx ) ≠ ( dist ‘ ndx )
95 dsndxnplusgndx ( dist ‘ ndx ) ≠ ( +g ‘ ndx )
96 95 necomi ( +g ‘ ndx ) ≠ ( dist ‘ ndx )
97 dsndxnmulrndx ( dist ‘ ndx ) ≠ ( .r ‘ ndx )
98 97 necomi ( .r ‘ ndx ) ≠ ( dist ‘ ndx )
99 94 96 98 3pm3.2i ( ( Base ‘ ndx ) ≠ ( dist ‘ ndx ) ∧ ( +g ‘ ndx ) ≠ ( dist ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( dist ‘ ndx ) )
100 disjtp2 ( ( ( ( Base ‘ ndx ) ≠ ( TopSet ‘ ndx ) ∧ ( +g ‘ ndx ) ≠ ( TopSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( TopSet ‘ ndx ) ) ∧ ( ( Base ‘ ndx ) ≠ ( le ‘ ndx ) ∧ ( +g ‘ ndx ) ≠ ( le ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( le ‘ ndx ) ) ∧ ( ( Base ‘ ndx ) ≠ ( dist ‘ ndx ) ∧ ( +g ‘ ndx ) ≠ ( dist ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( dist ‘ ndx ) ) ) → ( { ( Base ‘ ndx ) , ( +g ‘ ndx ) , ( .r ‘ ndx ) } ∩ { ( TopSet ‘ ndx ) , ( le ‘ ndx ) , ( dist ‘ ndx ) } ) = ∅ )
101 85 92 99 100 mp3an ( { ( Base ‘ ndx ) , ( +g ‘ ndx ) , ( .r ‘ ndx ) } ∩ { ( TopSet ‘ ndx ) , ( le ‘ ndx ) , ( dist ‘ ndx ) } ) = ∅
102 78 101 eqtri ( dom { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∩ dom { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ) = ∅
103 18 59 ineq12i ( dom { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∩ dom { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) = ( { ( Base ‘ ndx ) , ( +g ‘ ndx ) , ( .r ‘ ndx ) } ∩ { ( UnifSet ‘ ndx ) } )
104 unifndxnbasendx ( UnifSet ‘ ndx ) ≠ ( Base ‘ ndx )
105 104 necomi ( Base ‘ ndx ) ≠ ( UnifSet ‘ ndx )
106 105 a1i ( ( ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( *𝑟 ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) → ( Base ‘ ndx ) ≠ ( UnifSet ‘ ndx ) )
107 3simpa ( ( ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( *𝑟 ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) → ( ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) )
108 3anass ( ( ( Base ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ↔ ( ( Base ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ) )
109 106 107 108 sylanbrc ( ( ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( *𝑟 ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) → ( ( Base ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) )
110 109 adantr ( ( ( ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( *𝑟 ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ∧ ( ( le ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ) → ( ( Base ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) )
111 61 110 ax-mp ( ( Base ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) )
112 disjtpsn ( ( ( Base ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) → ( { ( Base ‘ ndx ) , ( +g ‘ ndx ) , ( .r ‘ ndx ) } ∩ { ( UnifSet ‘ ndx ) } ) = ∅ )
113 111 112 ax-mp ( { ( Base ‘ ndx ) , ( +g ‘ ndx ) , ( .r ‘ ndx ) } ∩ { ( UnifSet ‘ ndx ) } ) = ∅
114 103 113 eqtri ( dom { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∩ dom { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) = ∅
115 102 114 pm3.2i ( ( dom { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∩ dom { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ) = ∅ ∧ ( dom { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∩ dom { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) = ∅ )
116 undisj2 ( ( ( dom { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∩ dom { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ) = ∅ ∧ ( dom { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∩ dom { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) = ∅ ) ↔ ( dom { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∩ ( dom { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ dom { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) ) = ∅ )
117 115 116 mpbi ( dom { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∩ ( dom { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ dom { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) ) = ∅
118 19 58 ineq12i ( dom { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ∩ dom { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ) = ( { ( *𝑟 ‘ ndx ) } ∩ { ( TopSet ‘ ndx ) , ( le ‘ ndx ) , ( dist ‘ ndx ) } )
119 tsetndxnstarvndx ( TopSet ‘ ndx ) ≠ ( *𝑟 ‘ ndx )
120 necom ( ( *𝑟 ‘ ndx ) ≠ ( le ‘ ndx ) ↔ ( le ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) )
121 120 biimpi ( ( *𝑟 ‘ ndx ) ≠ ( le ‘ ndx ) → ( le ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) )
122 121 adantr ( ( ( *𝑟 ‘ ndx ) ≠ ( le ‘ ndx ) ∧ ( TopSet ‘ ndx ) ≠ ( le ‘ ndx ) ) → ( le ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) )
123 32 122 ax-mp ( le ‘ ndx ) ≠ ( *𝑟 ‘ ndx )
124 necom ( ( *𝑟 ‘ ndx ) ≠ ( dist ‘ ndx ) ↔ ( dist ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) )
125 124 biimpi ( ( *𝑟 ‘ ndx ) ≠ ( dist ‘ ndx ) → ( dist ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) )
126 125 adantr ( ( ( *𝑟 ‘ ndx ) ≠ ( dist ‘ ndx ) ∧ ( le ‘ ndx ) ≠ ( dist ‘ ndx ) ) → ( dist ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) )
127 36 126 ax-mp ( dist ‘ ndx ) ≠ ( *𝑟 ‘ ndx )
128 disjtpsn ( ( ( TopSet ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) ∧ ( le ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) ) → ( { ( TopSet ‘ ndx ) , ( le ‘ ndx ) , ( dist ‘ ndx ) } ∩ { ( *𝑟 ‘ ndx ) } ) = ∅ )
129 119 123 127 128 mp3an ( { ( TopSet ‘ ndx ) , ( le ‘ ndx ) , ( dist ‘ ndx ) } ∩ { ( *𝑟 ‘ ndx ) } ) = ∅
130 129 ineqcomi ( { ( *𝑟 ‘ ndx ) } ∩ { ( TopSet ‘ ndx ) , ( le ‘ ndx ) , ( dist ‘ ndx ) } ) = ∅
131 118 130 eqtri ( dom { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ∩ dom { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ) = ∅
132 19 59 ineq12i ( dom { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ∩ dom { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) = ( { ( *𝑟 ‘ ndx ) } ∩ { ( UnifSet ‘ ndx ) } )
133 simpl3 ( ( ( ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( *𝑟 ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ∧ ( ( le ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ) → ( *𝑟 ‘ ndx ) ≠ ( UnifSet ‘ ndx ) )
134 61 133 ax-mp ( *𝑟 ‘ ndx ) ≠ ( UnifSet ‘ ndx )
135 disjsn2 ( ( *𝑟 ‘ ndx ) ≠ ( UnifSet ‘ ndx ) → ( { ( *𝑟 ‘ ndx ) } ∩ { ( UnifSet ‘ ndx ) } ) = ∅ )
136 134 135 ax-mp ( { ( *𝑟 ‘ ndx ) } ∩ { ( UnifSet ‘ ndx ) } ) = ∅
137 132 136 eqtri ( dom { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ∩ dom { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) = ∅
138 131 137 pm3.2i ( ( dom { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ∩ dom { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ) = ∅ ∧ ( dom { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ∩ dom { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) = ∅ )
139 undisj2 ( ( ( dom { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ∩ dom { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ) = ∅ ∧ ( dom { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ∩ dom { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) = ∅ ) ↔ ( dom { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ∩ ( dom { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ dom { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) ) = ∅ )
140 138 139 mpbi ( dom { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ∩ ( dom { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ dom { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) ) = ∅
141 117 140 pm3.2i ( ( dom { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∩ ( dom { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ dom { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) ) = ∅ ∧ ( dom { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ∩ ( dom { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ dom { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) ) = ∅ )
142 undisj1 ( ( ( dom { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∩ ( dom { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ dom { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) ) = ∅ ∧ ( dom { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ∩ ( dom { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ dom { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) ) = ∅ ) ↔ ( ( dom { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ dom { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ) ∩ ( dom { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ dom { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) ) = ∅ )
143 141 142 mpbi ( ( dom { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ dom { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ) ∩ ( dom { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ dom { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) ) = ∅
144 77 143 eqtri ( dom ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ) ∩ dom ( { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) ) = ∅
145 funun ( ( ( Fun ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ) ∧ Fun ( { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) ) ∧ ( dom ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ) ∩ dom ( { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) ) = ∅ ) → Fun ( ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ) ∪ ( { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) ) )
146 74 144 145 mp2an Fun ( ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ) ∪ ( { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) )
147 df-cnfld fld = ( ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ) ∪ ( { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) )
148 147 funeqi ( Fun ℂfld ↔ Fun ( ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ) ∪ ( { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) ) )
149 146 148 mpbir Fun ℂfld