Step |
Hyp |
Ref |
Expression |
1 |
|
eldifsn |
⊢ ( 𝑋 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑋 ∈ ℂ ∧ 𝑋 ≠ 0 ) ) |
2 |
|
cnring |
⊢ ℂfld ∈ Ring |
3 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
4 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
5 |
|
cndrng |
⊢ ℂfld ∈ DivRing |
6 |
3 4 5
|
drngui |
⊢ ( ℂ ∖ { 0 } ) = ( Unit ‘ ℂfld ) |
7 |
|
cnflddiv |
⊢ / = ( /r ‘ ℂfld ) |
8 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
9 |
|
eqid |
⊢ ( invr ‘ ℂfld ) = ( invr ‘ ℂfld ) |
10 |
3 6 7 8 9
|
ringinvdv |
⊢ ( ( ℂfld ∈ Ring ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( ( invr ‘ ℂfld ) ‘ 𝑋 ) = ( 1 / 𝑋 ) ) |
11 |
2 10
|
mpan |
⊢ ( 𝑋 ∈ ( ℂ ∖ { 0 } ) → ( ( invr ‘ ℂfld ) ‘ 𝑋 ) = ( 1 / 𝑋 ) ) |
12 |
1 11
|
sylbir |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑋 ≠ 0 ) → ( ( invr ‘ ℂfld ) ‘ 𝑋 ) = ( 1 / 𝑋 ) ) |