| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnmet | ⊢ ( abs  ∘   −  )  ∈  ( Met ‘ ℂ ) | 
						
							| 2 |  | eqid | ⊢ ( MetOpen ‘ ( abs  ∘   −  ) )  =  ( MetOpen ‘ ( abs  ∘   −  ) ) | 
						
							| 3 |  | cnxmet | ⊢ ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ ) | 
						
							| 4 | 2 | mopntopon | ⊢ ( ( abs  ∘   −  )  ∈  ( ∞Met ‘ ℂ )  →  ( MetOpen ‘ ( abs  ∘   −  ) )  ∈  ( TopOn ‘ ℂ ) ) | 
						
							| 5 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 6 |  | cnfldtset | ⊢ ( MetOpen ‘ ( abs  ∘   −  ) )  =  ( TopSet ‘ ℂfld ) | 
						
							| 7 | 5 6 | topontopn | ⊢ ( ( MetOpen ‘ ( abs  ∘   −  ) )  ∈  ( TopOn ‘ ℂ )  →  ( MetOpen ‘ ( abs  ∘   −  ) )  =  ( TopOpen ‘ ℂfld ) ) | 
						
							| 8 | 3 4 7 | mp2b | ⊢ ( MetOpen ‘ ( abs  ∘   −  ) )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 9 |  | absf | ⊢ abs : ℂ ⟶ ℝ | 
						
							| 10 |  | subf | ⊢  −  : ( ℂ  ×  ℂ ) ⟶ ℂ | 
						
							| 11 |  | fco | ⊢ ( ( abs : ℂ ⟶ ℝ  ∧   −  : ( ℂ  ×  ℂ ) ⟶ ℂ )  →  ( abs  ∘   −  ) : ( ℂ  ×  ℂ ) ⟶ ℝ ) | 
						
							| 12 | 9 10 11 | mp2an | ⊢ ( abs  ∘   −  ) : ( ℂ  ×  ℂ ) ⟶ ℝ | 
						
							| 13 |  | ffn | ⊢ ( ( abs  ∘   −  ) : ( ℂ  ×  ℂ ) ⟶ ℝ  →  ( abs  ∘   −  )  Fn  ( ℂ  ×  ℂ ) ) | 
						
							| 14 |  | fnresdm | ⊢ ( ( abs  ∘   −  )  Fn  ( ℂ  ×  ℂ )  →  ( ( abs  ∘   −  )  ↾  ( ℂ  ×  ℂ ) )  =  ( abs  ∘   −  ) ) | 
						
							| 15 | 12 13 14 | mp2b | ⊢ ( ( abs  ∘   −  )  ↾  ( ℂ  ×  ℂ ) )  =  ( abs  ∘   −  ) | 
						
							| 16 |  | cnfldds | ⊢ ( abs  ∘   −  )  =  ( dist ‘ ℂfld ) | 
						
							| 17 | 16 | reseq1i | ⊢ ( ( abs  ∘   −  )  ↾  ( ℂ  ×  ℂ ) )  =  ( ( dist ‘ ℂfld )  ↾  ( ℂ  ×  ℂ ) ) | 
						
							| 18 | 15 17 | eqtr3i | ⊢ ( abs  ∘   −  )  =  ( ( dist ‘ ℂfld )  ↾  ( ℂ  ×  ℂ ) ) | 
						
							| 19 | 8 5 18 | isms2 | ⊢ ( ℂfld  ∈  MetSp  ↔  ( ( abs  ∘   −  )  ∈  ( Met ‘ ℂ )  ∧  ( MetOpen ‘ ( abs  ∘   −  ) )  =  ( MetOpen ‘ ( abs  ∘   −  ) ) ) ) | 
						
							| 20 | 1 2 19 | mpbir2an | ⊢ ℂfld  ∈  MetSp |