Step |
Hyp |
Ref |
Expression |
1 |
|
cnmet |
⊢ ( abs ∘ − ) ∈ ( Met ‘ ℂ ) |
2 |
|
eqid |
⊢ ( MetOpen ‘ ( abs ∘ − ) ) = ( MetOpen ‘ ( abs ∘ − ) ) |
3 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
4 |
2
|
mopntopon |
⊢ ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) → ( MetOpen ‘ ( abs ∘ − ) ) ∈ ( TopOn ‘ ℂ ) ) |
5 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
6 |
|
cnfldtset |
⊢ ( MetOpen ‘ ( abs ∘ − ) ) = ( TopSet ‘ ℂfld ) |
7 |
5 6
|
topontopn |
⊢ ( ( MetOpen ‘ ( abs ∘ − ) ) ∈ ( TopOn ‘ ℂ ) → ( MetOpen ‘ ( abs ∘ − ) ) = ( TopOpen ‘ ℂfld ) ) |
8 |
3 4 7
|
mp2b |
⊢ ( MetOpen ‘ ( abs ∘ − ) ) = ( TopOpen ‘ ℂfld ) |
9 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
10 |
|
subf |
⊢ − : ( ℂ × ℂ ) ⟶ ℂ |
11 |
|
fco |
⊢ ( ( abs : ℂ ⟶ ℝ ∧ − : ( ℂ × ℂ ) ⟶ ℂ ) → ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ ) |
12 |
9 10 11
|
mp2an |
⊢ ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ |
13 |
|
ffn |
⊢ ( ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ → ( abs ∘ − ) Fn ( ℂ × ℂ ) ) |
14 |
|
fnresdm |
⊢ ( ( abs ∘ − ) Fn ( ℂ × ℂ ) → ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) = ( abs ∘ − ) ) |
15 |
12 13 14
|
mp2b |
⊢ ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) = ( abs ∘ − ) |
16 |
|
cnfldds |
⊢ ( abs ∘ − ) = ( dist ‘ ℂfld ) |
17 |
16
|
reseq1i |
⊢ ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) = ( ( dist ‘ ℂfld ) ↾ ( ℂ × ℂ ) ) |
18 |
15 17
|
eqtr3i |
⊢ ( abs ∘ − ) = ( ( dist ‘ ℂfld ) ↾ ( ℂ × ℂ ) ) |
19 |
8 5 18
|
isms2 |
⊢ ( ℂfld ∈ MetSp ↔ ( ( abs ∘ − ) ∈ ( Met ‘ ℂ ) ∧ ( MetOpen ‘ ( abs ∘ − ) ) = ( MetOpen ‘ ( abs ∘ − ) ) ) ) |
20 |
1 2 19
|
mpbir2an |
⊢ ℂfld ∈ MetSp |