Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ( .g ‘ ℂfld ) 𝐵 ) = ( 0 ( .g ‘ ℂfld ) 𝐵 ) ) |
2 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 · 𝐵 ) = ( 0 · 𝐵 ) ) |
3 |
1 2
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝑥 · 𝐵 ) ↔ ( 0 ( .g ‘ ℂfld ) 𝐵 ) = ( 0 · 𝐵 ) ) ) |
4 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝑦 ( .g ‘ ℂfld ) 𝐵 ) ) |
5 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 · 𝐵 ) = ( 𝑦 · 𝐵 ) ) |
6 |
4 5
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝑥 · 𝐵 ) ↔ ( 𝑦 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝑦 · 𝐵 ) ) ) |
7 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 ( .g ‘ ℂfld ) 𝐵 ) = ( ( 𝑦 + 1 ) ( .g ‘ ℂfld ) 𝐵 ) ) |
8 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 · 𝐵 ) = ( ( 𝑦 + 1 ) · 𝐵 ) ) |
9 |
7 8
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝑥 · 𝐵 ) ↔ ( ( 𝑦 + 1 ) ( .g ‘ ℂfld ) 𝐵 ) = ( ( 𝑦 + 1 ) · 𝐵 ) ) ) |
10 |
|
oveq1 |
⊢ ( 𝑥 = - 𝑦 → ( 𝑥 ( .g ‘ ℂfld ) 𝐵 ) = ( - 𝑦 ( .g ‘ ℂfld ) 𝐵 ) ) |
11 |
|
oveq1 |
⊢ ( 𝑥 = - 𝑦 → ( 𝑥 · 𝐵 ) = ( - 𝑦 · 𝐵 ) ) |
12 |
10 11
|
eqeq12d |
⊢ ( 𝑥 = - 𝑦 → ( ( 𝑥 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝑥 · 𝐵 ) ↔ ( - 𝑦 ( .g ‘ ℂfld ) 𝐵 ) = ( - 𝑦 · 𝐵 ) ) ) |
13 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝐴 ( .g ‘ ℂfld ) 𝐵 ) ) |
14 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 · 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
15 |
13 14
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝑥 · 𝐵 ) ↔ ( 𝐴 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝐴 · 𝐵 ) ) ) |
16 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
17 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
18 |
|
eqid |
⊢ ( .g ‘ ℂfld ) = ( .g ‘ ℂfld ) |
19 |
16 17 18
|
mulg0 |
⊢ ( 𝐵 ∈ ℂ → ( 0 ( .g ‘ ℂfld ) 𝐵 ) = 0 ) |
20 |
|
mul02 |
⊢ ( 𝐵 ∈ ℂ → ( 0 · 𝐵 ) = 0 ) |
21 |
19 20
|
eqtr4d |
⊢ ( 𝐵 ∈ ℂ → ( 0 ( .g ‘ ℂfld ) 𝐵 ) = ( 0 · 𝐵 ) ) |
22 |
|
oveq1 |
⊢ ( ( 𝑦 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝑦 · 𝐵 ) → ( ( 𝑦 ( .g ‘ ℂfld ) 𝐵 ) + 𝐵 ) = ( ( 𝑦 · 𝐵 ) + 𝐵 ) ) |
23 |
|
cnring |
⊢ ℂfld ∈ Ring |
24 |
|
ringmnd |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ Mnd ) |
25 |
23 24
|
ax-mp |
⊢ ℂfld ∈ Mnd |
26 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
27 |
16 18 26
|
mulgnn0p1 |
⊢ ( ( ℂfld ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝐵 ∈ ℂ ) → ( ( 𝑦 + 1 ) ( .g ‘ ℂfld ) 𝐵 ) = ( ( 𝑦 ( .g ‘ ℂfld ) 𝐵 ) + 𝐵 ) ) |
28 |
25 27
|
mp3an1 |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝐵 ∈ ℂ ) → ( ( 𝑦 + 1 ) ( .g ‘ ℂfld ) 𝐵 ) = ( ( 𝑦 ( .g ‘ ℂfld ) 𝐵 ) + 𝐵 ) ) |
29 |
|
nn0cn |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℂ ) |
30 |
29
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝐵 ∈ ℂ ) → 𝑦 ∈ ℂ ) |
31 |
|
simpr |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
32 |
30 31
|
adddirp1d |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝐵 ∈ ℂ ) → ( ( 𝑦 + 1 ) · 𝐵 ) = ( ( 𝑦 · 𝐵 ) + 𝐵 ) ) |
33 |
28 32
|
eqeq12d |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝑦 + 1 ) ( .g ‘ ℂfld ) 𝐵 ) = ( ( 𝑦 + 1 ) · 𝐵 ) ↔ ( ( 𝑦 ( .g ‘ ℂfld ) 𝐵 ) + 𝐵 ) = ( ( 𝑦 · 𝐵 ) + 𝐵 ) ) ) |
34 |
22 33
|
syl5ibr |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝐵 ∈ ℂ ) → ( ( 𝑦 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝑦 · 𝐵 ) → ( ( 𝑦 + 1 ) ( .g ‘ ℂfld ) 𝐵 ) = ( ( 𝑦 + 1 ) · 𝐵 ) ) ) |
35 |
34
|
expcom |
⊢ ( 𝐵 ∈ ℂ → ( 𝑦 ∈ ℕ0 → ( ( 𝑦 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝑦 · 𝐵 ) → ( ( 𝑦 + 1 ) ( .g ‘ ℂfld ) 𝐵 ) = ( ( 𝑦 + 1 ) · 𝐵 ) ) ) ) |
36 |
|
fveq2 |
⊢ ( ( 𝑦 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝑦 · 𝐵 ) → ( ( invg ‘ ℂfld ) ‘ ( 𝑦 ( .g ‘ ℂfld ) 𝐵 ) ) = ( ( invg ‘ ℂfld ) ‘ ( 𝑦 · 𝐵 ) ) ) |
37 |
|
eqid |
⊢ ( invg ‘ ℂfld ) = ( invg ‘ ℂfld ) |
38 |
16 18 37
|
mulgnegnn |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ ) → ( - 𝑦 ( .g ‘ ℂfld ) 𝐵 ) = ( ( invg ‘ ℂfld ) ‘ ( 𝑦 ( .g ‘ ℂfld ) 𝐵 ) ) ) |
39 |
|
nncn |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) |
40 |
|
mulneg1 |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝑦 · 𝐵 ) = - ( 𝑦 · 𝐵 ) ) |
41 |
39 40
|
sylan |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ ) → ( - 𝑦 · 𝐵 ) = - ( 𝑦 · 𝐵 ) ) |
42 |
|
mulcl |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝑦 · 𝐵 ) ∈ ℂ ) |
43 |
39 42
|
sylan |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ ) → ( 𝑦 · 𝐵 ) ∈ ℂ ) |
44 |
|
cnfldneg |
⊢ ( ( 𝑦 · 𝐵 ) ∈ ℂ → ( ( invg ‘ ℂfld ) ‘ ( 𝑦 · 𝐵 ) ) = - ( 𝑦 · 𝐵 ) ) |
45 |
43 44
|
syl |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ ) → ( ( invg ‘ ℂfld ) ‘ ( 𝑦 · 𝐵 ) ) = - ( 𝑦 · 𝐵 ) ) |
46 |
41 45
|
eqtr4d |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ ) → ( - 𝑦 · 𝐵 ) = ( ( invg ‘ ℂfld ) ‘ ( 𝑦 · 𝐵 ) ) ) |
47 |
38 46
|
eqeq12d |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ ) → ( ( - 𝑦 ( .g ‘ ℂfld ) 𝐵 ) = ( - 𝑦 · 𝐵 ) ↔ ( ( invg ‘ ℂfld ) ‘ ( 𝑦 ( .g ‘ ℂfld ) 𝐵 ) ) = ( ( invg ‘ ℂfld ) ‘ ( 𝑦 · 𝐵 ) ) ) ) |
48 |
36 47
|
syl5ibr |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ ) → ( ( 𝑦 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝑦 · 𝐵 ) → ( - 𝑦 ( .g ‘ ℂfld ) 𝐵 ) = ( - 𝑦 · 𝐵 ) ) ) |
49 |
48
|
expcom |
⊢ ( 𝐵 ∈ ℂ → ( 𝑦 ∈ ℕ → ( ( 𝑦 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝑦 · 𝐵 ) → ( - 𝑦 ( .g ‘ ℂfld ) 𝐵 ) = ( - 𝑦 · 𝐵 ) ) ) ) |
50 |
3 6 9 12 15 21 35 49
|
zindd |
⊢ ( 𝐵 ∈ ℂ → ( 𝐴 ∈ ℤ → ( 𝐴 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝐴 · 𝐵 ) ) ) |
51 |
50
|
impcom |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ( .g ‘ ℂfld ) 𝐵 ) = ( 𝐴 · 𝐵 ) ) |