| Step |
Hyp |
Ref |
Expression |
| 1 |
|
negid |
⊢ ( 𝑋 ∈ ℂ → ( 𝑋 + - 𝑋 ) = 0 ) |
| 2 |
|
negcl |
⊢ ( 𝑋 ∈ ℂ → - 𝑋 ∈ ℂ ) |
| 3 |
|
cnring |
⊢ ℂfld ∈ Ring |
| 4 |
|
ringgrp |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ Grp ) |
| 5 |
3 4
|
ax-mp |
⊢ ℂfld ∈ Grp |
| 6 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 7 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
| 8 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
| 9 |
|
eqid |
⊢ ( invg ‘ ℂfld ) = ( invg ‘ ℂfld ) |
| 10 |
6 7 8 9
|
grpinvid1 |
⊢ ( ( ℂfld ∈ Grp ∧ 𝑋 ∈ ℂ ∧ - 𝑋 ∈ ℂ ) → ( ( ( invg ‘ ℂfld ) ‘ 𝑋 ) = - 𝑋 ↔ ( 𝑋 + - 𝑋 ) = 0 ) ) |
| 11 |
5 10
|
mp3an1 |
⊢ ( ( 𝑋 ∈ ℂ ∧ - 𝑋 ∈ ℂ ) → ( ( ( invg ‘ ℂfld ) ‘ 𝑋 ) = - 𝑋 ↔ ( 𝑋 + - 𝑋 ) = 0 ) ) |
| 12 |
2 11
|
mpdan |
⊢ ( 𝑋 ∈ ℂ → ( ( ( invg ‘ ℂfld ) ‘ 𝑋 ) = - 𝑋 ↔ ( 𝑋 + - 𝑋 ) = 0 ) ) |
| 13 |
1 12
|
mpbird |
⊢ ( 𝑋 ∈ ℂ → ( ( invg ‘ ℂfld ) ‘ 𝑋 ) = - 𝑋 ) |