Step |
Hyp |
Ref |
Expression |
1 |
|
0cn |
⊢ 0 ∈ ℂ |
2 |
|
eqid |
⊢ ( abs ∘ − ) = ( abs ∘ − ) |
3 |
2
|
cnmetdval |
⊢ ( ( 𝑥 ∈ ℂ ∧ 0 ∈ ℂ ) → ( 𝑥 ( abs ∘ − ) 0 ) = ( abs ‘ ( 𝑥 − 0 ) ) ) |
4 |
1 3
|
mpan2 |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ( abs ∘ − ) 0 ) = ( abs ‘ ( 𝑥 − 0 ) ) ) |
5 |
|
subid1 |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 − 0 ) = 𝑥 ) |
6 |
5
|
fveq2d |
⊢ ( 𝑥 ∈ ℂ → ( abs ‘ ( 𝑥 − 0 ) ) = ( abs ‘ 𝑥 ) ) |
7 |
4 6
|
eqtrd |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ( abs ∘ − ) 0 ) = ( abs ‘ 𝑥 ) ) |
8 |
7
|
mpteq2ia |
⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ( abs ∘ − ) 0 ) ) = ( 𝑥 ∈ ℂ ↦ ( abs ‘ 𝑥 ) ) |
9 |
|
eqid |
⊢ ( norm ‘ ℂfld ) = ( norm ‘ ℂfld ) |
10 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
11 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
12 |
|
cnfldds |
⊢ ( abs ∘ − ) = ( dist ‘ ℂfld ) |
13 |
9 10 11 12
|
nmfval |
⊢ ( norm ‘ ℂfld ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ( abs ∘ − ) 0 ) ) |
14 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
15 |
14
|
a1i |
⊢ ( ⊤ → abs : ℂ ⟶ ℝ ) |
16 |
15
|
feqmptd |
⊢ ( ⊤ → abs = ( 𝑥 ∈ ℂ ↦ ( abs ‘ 𝑥 ) ) ) |
17 |
16
|
mptru |
⊢ abs = ( 𝑥 ∈ ℂ ↦ ( abs ‘ 𝑥 ) ) |
18 |
8 13 17
|
3eqtr4ri |
⊢ abs = ( norm ‘ ℂfld ) |