Metamath Proof Explorer


Theorem cnfldsub

Description: The subtraction operator in the field of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Assertion cnfldsub − = ( -g ‘ ℂfld )

Proof

Step Hyp Ref Expression
1 cnfldbas ℂ = ( Base ‘ ℂfld )
2 cnfldadd + = ( +g ‘ ℂfld )
3 eqid ( invg ‘ ℂfld ) = ( invg ‘ ℂfld )
4 eqid ( -g ‘ ℂfld ) = ( -g ‘ ℂfld )
5 1 2 3 4 grpsubval ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 ( -g ‘ ℂfld ) 𝑦 ) = ( 𝑥 + ( ( invg ‘ ℂfld ) ‘ 𝑦 ) ) )
6 cnfldneg ( 𝑦 ∈ ℂ → ( ( invg ‘ ℂfld ) ‘ 𝑦 ) = - 𝑦 )
7 6 adantl ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( invg ‘ ℂfld ) ‘ 𝑦 ) = - 𝑦 )
8 7 oveq2d ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + ( ( invg ‘ ℂfld ) ‘ 𝑦 ) ) = ( 𝑥 + - 𝑦 ) )
9 negsub ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + - 𝑦 ) = ( 𝑥𝑦 ) )
10 5 8 9 3eqtrrd ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥𝑦 ) = ( 𝑥 ( -g ‘ ℂfld ) 𝑦 ) )
11 10 mpoeq3ia ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥𝑦 ) ) = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 ( -g ‘ ℂfld ) 𝑦 ) )
12 subf − : ( ℂ × ℂ ) ⟶ ℂ
13 ffn ( − : ( ℂ × ℂ ) ⟶ ℂ → − Fn ( ℂ × ℂ ) )
14 12 13 ax-mp − Fn ( ℂ × ℂ )
15 fnov ( − Fn ( ℂ × ℂ ) ↔ − = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥𝑦 ) ) )
16 14 15 mpbi − = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥𝑦 ) )
17 cnring fld ∈ Ring
18 ringgrp ( ℂfld ∈ Ring → ℂfld ∈ Grp )
19 17 18 ax-mp fld ∈ Grp
20 1 4 grpsubf ( ℂfld ∈ Grp → ( -g ‘ ℂfld ) : ( ℂ × ℂ ) ⟶ ℂ )
21 ffn ( ( -g ‘ ℂfld ) : ( ℂ × ℂ ) ⟶ ℂ → ( -g ‘ ℂfld ) Fn ( ℂ × ℂ ) )
22 19 20 21 mp2b ( -g ‘ ℂfld ) Fn ( ℂ × ℂ )
23 fnov ( ( -g ‘ ℂfld ) Fn ( ℂ × ℂ ) ↔ ( -g ‘ ℂfld ) = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 ( -g ‘ ℂfld ) 𝑦 ) ) )
24 22 23 mpbi ( -g ‘ ℂfld ) = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 ( -g ‘ ℂfld ) 𝑦 ) )
25 11 16 24 3eqtr4i − = ( -g ‘ ℂfld )