| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 2 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
| 3 |
|
eqid |
⊢ ( invg ‘ ℂfld ) = ( invg ‘ ℂfld ) |
| 4 |
|
eqid |
⊢ ( -g ‘ ℂfld ) = ( -g ‘ ℂfld ) |
| 5 |
1 2 3 4
|
grpsubval |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 ( -g ‘ ℂfld ) 𝑦 ) = ( 𝑥 + ( ( invg ‘ ℂfld ) ‘ 𝑦 ) ) ) |
| 6 |
|
cnfldneg |
⊢ ( 𝑦 ∈ ℂ → ( ( invg ‘ ℂfld ) ‘ 𝑦 ) = - 𝑦 ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( invg ‘ ℂfld ) ‘ 𝑦 ) = - 𝑦 ) |
| 8 |
7
|
oveq2d |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + ( ( invg ‘ ℂfld ) ‘ 𝑦 ) ) = ( 𝑥 + - 𝑦 ) ) |
| 9 |
|
negsub |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + - 𝑦 ) = ( 𝑥 − 𝑦 ) ) |
| 10 |
5 8 9
|
3eqtrrd |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 − 𝑦 ) = ( 𝑥 ( -g ‘ ℂfld ) 𝑦 ) ) |
| 11 |
10
|
mpoeq3ia |
⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 − 𝑦 ) ) = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 ( -g ‘ ℂfld ) 𝑦 ) ) |
| 12 |
|
subf |
⊢ − : ( ℂ × ℂ ) ⟶ ℂ |
| 13 |
|
ffn |
⊢ ( − : ( ℂ × ℂ ) ⟶ ℂ → − Fn ( ℂ × ℂ ) ) |
| 14 |
12 13
|
ax-mp |
⊢ − Fn ( ℂ × ℂ ) |
| 15 |
|
fnov |
⊢ ( − Fn ( ℂ × ℂ ) ↔ − = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 − 𝑦 ) ) ) |
| 16 |
14 15
|
mpbi |
⊢ − = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 − 𝑦 ) ) |
| 17 |
|
cnring |
⊢ ℂfld ∈ Ring |
| 18 |
|
ringgrp |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ Grp ) |
| 19 |
17 18
|
ax-mp |
⊢ ℂfld ∈ Grp |
| 20 |
1 4
|
grpsubf |
⊢ ( ℂfld ∈ Grp → ( -g ‘ ℂfld ) : ( ℂ × ℂ ) ⟶ ℂ ) |
| 21 |
|
ffn |
⊢ ( ( -g ‘ ℂfld ) : ( ℂ × ℂ ) ⟶ ℂ → ( -g ‘ ℂfld ) Fn ( ℂ × ℂ ) ) |
| 22 |
19 20 21
|
mp2b |
⊢ ( -g ‘ ℂfld ) Fn ( ℂ × ℂ ) |
| 23 |
|
fnov |
⊢ ( ( -g ‘ ℂfld ) Fn ( ℂ × ℂ ) ↔ ( -g ‘ ℂfld ) = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 ( -g ‘ ℂfld ) 𝑦 ) ) ) |
| 24 |
22 23
|
mpbi |
⊢ ( -g ‘ ℂfld ) = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 ( -g ‘ ℂfld ) 𝑦 ) ) |
| 25 |
11 16 24
|
3eqtr4i |
⊢ − = ( -g ‘ ℂfld ) |