Metamath Proof Explorer


Theorem cnfldtgp

Description: The complex numbers form a topological group under addition, with the standard topology induced by the absolute value metric. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Assertion cnfldtgp fld ∈ TopGrp

Proof

Step Hyp Ref Expression
1 cnring fld ∈ Ring
2 ringgrp ( ℂfld ∈ Ring → ℂfld ∈ Grp )
3 1 2 ax-mp fld ∈ Grp
4 cnfldtps fld ∈ TopSp
5 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
6 5 subcn − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) )
7 cnfldsub − = ( -g ‘ ℂfld )
8 5 7 istgp2 ( ℂfld ∈ TopGrp ↔ ( ℂfld ∈ Grp ∧ ℂfld ∈ TopSp ∧ − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) )
9 3 4 6 8 mpbir3an fld ∈ TopGrp