Description: The complex numbers form a topological group under addition, with the standard topology induced by the absolute value metric. (Contributed by Mario Carneiro, 2-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | cnfldtgp | ⊢ ℂfld ∈ TopGrp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnring | ⊢ ℂfld ∈ Ring | |
2 | ringgrp | ⊢ ( ℂfld ∈ Ring → ℂfld ∈ Grp ) | |
3 | 1 2 | ax-mp | ⊢ ℂfld ∈ Grp |
4 | cnfldtps | ⊢ ℂfld ∈ TopSp | |
5 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
6 | 5 | subcn | ⊢ − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
7 | cnfldsub | ⊢ − = ( -g ‘ ℂfld ) | |
8 | 5 7 | istgp2 | ⊢ ( ℂfld ∈ TopGrp ↔ ( ℂfld ∈ Grp ∧ ℂfld ∈ TopSp ∧ − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) ) |
9 | 3 4 6 8 | mpbir3an | ⊢ ℂfld ∈ TopGrp |