| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnfldtopn.1 |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
| 2 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
| 3 |
|
eqid |
⊢ ( MetOpen ‘ ( abs ∘ − ) ) = ( MetOpen ‘ ( abs ∘ − ) ) |
| 4 |
3
|
mopntopon |
⊢ ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) → ( MetOpen ‘ ( abs ∘ − ) ) ∈ ( TopOn ‘ ℂ ) ) |
| 5 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 6 |
|
cnfldtset |
⊢ ( MetOpen ‘ ( abs ∘ − ) ) = ( TopSet ‘ ℂfld ) |
| 7 |
5 6
|
topontopn |
⊢ ( ( MetOpen ‘ ( abs ∘ − ) ) ∈ ( TopOn ‘ ℂ ) → ( MetOpen ‘ ( abs ∘ − ) ) = ( TopOpen ‘ ℂfld ) ) |
| 8 |
2 4 7
|
mp2b |
⊢ ( MetOpen ‘ ( abs ∘ − ) ) = ( TopOpen ‘ ℂfld ) |
| 9 |
1 8
|
eqtr4i |
⊢ 𝐽 = ( MetOpen ‘ ( abs ∘ − ) ) |