Metamath Proof Explorer
Description: The topology of the complex numbers is a topology. (Contributed by Mario Carneiro, 2-Sep-2015)
|
|
Ref |
Expression |
|
Hypothesis |
cnfldtopn.1 |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
|
Assertion |
cnfldtopon |
⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
cnfldtopn.1 |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
2 |
|
cnfldtps |
⊢ ℂfld ∈ TopSp |
3 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
4 |
3 1
|
istps |
⊢ ( ℂfld ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ ℂ ) ) |
5 |
2 4
|
mpbi |
⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |