Step |
Hyp |
Ref |
Expression |
1 |
|
fvex |
⊢ ( metUnif ‘ ( abs ∘ − ) ) ∈ V |
2 |
|
cnfldstr |
⊢ ℂfld Struct ⟨ 1 , ; 1 3 ⟩ |
3 |
|
unifid |
⊢ UnifSet = Slot ( UnifSet ‘ ndx ) |
4 |
|
ssun2 |
⊢ { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ⊆ ( { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) |
5 |
|
ssun2 |
⊢ ( { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) ⊆ ( ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ) ∪ ( { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) ) |
6 |
|
df-cnfld |
⊢ ℂfld = ( ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ) ∪ ( { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) ) |
7 |
5 6
|
sseqtrri |
⊢ ( { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) ⊆ ℂfld |
8 |
4 7
|
sstri |
⊢ { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ⊆ ℂfld |
9 |
2 3 8
|
strfv |
⊢ ( ( metUnif ‘ ( abs ∘ − ) ) ∈ V → ( metUnif ‘ ( abs ∘ − ) ) = ( UnifSet ‘ ℂfld ) ) |
10 |
1 9
|
ax-mp |
⊢ ( metUnif ‘ ( abs ∘ − ) ) = ( UnifSet ‘ ℂfld ) |