Metamath Proof Explorer


Theorem cnfldunif

Description: The uniform structure component of the complex numbers. (Contributed by Thierry Arnoux, 17-Dec-2017) Revise df-cnfld . (Revised by GG, 31-Mar-2025)

Ref Expression
Assertion cnfldunif ( metUnif ‘ ( abs ∘ − ) ) = ( UnifSet ‘ ℂfld )

Proof

Step Hyp Ref Expression
1 fvex ( metUnif ‘ ( abs ∘ − ) ) ∈ V
2 cnfldstr fld Struct ⟨ 1 , 1 3 ⟩
3 unifid UnifSet = Slot ( UnifSet ‘ ndx )
4 ssun2 { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ⊆ ( { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } )
5 ssun2 ( { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) ⊆ ( ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ) ∪ ( { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) )
6 df-cnfld fld = ( ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 + 𝑣 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ) ∪ ( { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) )
7 5 6 sseqtrri ( { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) ⊆ ℂfld
8 4 7 sstri { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ⊆ ℂfld
9 2 3 8 strfv ( ( metUnif ‘ ( abs ∘ − ) ) ∈ V → ( metUnif ‘ ( abs ∘ − ) ) = ( UnifSet ‘ ℂfld ) )
10 1 9 ax-mp ( metUnif ‘ ( abs ∘ − ) ) = ( UnifSet ‘ ℂfld )